
CMPS 1600 Introduction to Computer Science II – Spring 14

4/18/14

11. Homework
Programming portion due Friday 4/25/14 at 11:55pm on Blackboard.

All the code for this homework should be in Scheme. Please submit one .rkt file on
Blackboard.
In order to receive any credit for the programming portions, you are required
to thoroughly comment and test your code.

1. Mystery (2 points)
Consider the following function below:

(define (mystery L)

(if (= (length L) 0)

’()

(let ([k (quotient (length L) 2)])

(list (list-ref L k) (mystery (take L k)) (mystery (drop L (+ k 1)))))))

What does (mystery ’(1 2 3 4 5 6 7)) compute? As what kind of data
structure can you interpret this? (Submit the answer for this question electronically
on Blackboard; possibly as comments in the .rkt file.)

2. Higher-Order Functions (4 points)

(a) (1 point) Implement a function applyTwice that applies a function f twice to
an input argument x.

(b) (2 points) Now implement a function apply that applies a function f n-times
to an input argument x.

(c) (1 point) Test apply and applyTwice by using a lambda expression to define
an input function of your choice.

3. Length (3 points)
Use foldr to define a function myLength that computes the length of an input list.
Use a lambda expression to define the input function for foldr.

4. Contains (3 points)

(a) (3 points) Use foldl or foldr to write a contains function that returns true
if x is contained in the list L, and false otherwise.

(b) (2 extra credit points) Use the contains function to implement a function
remove-duplicates that removes all duplicates from an input list.

5. Map (3 points)
Use foldr to define a myMap function that has the same functionality as map. Use a
lambda expression to define the input function for foldr.

Flip over to back page =⇒



6. Filter (5 points)
A unary predicate is a function that takes one argument and returns true or false.
The built-in filter function takes a unary predicate p and a list L as arguments,
and returns a list that contains all elements in L for which p is true.

(a) (1 point) Write a predicate isPositive that returns true if the input is
positive.

(b) (1 point) Test the built-in filter function to return all the negative numbers
from an input list of numbers. Use a lambda expression to define the predicate
that returns true if the input is negative.

(c) (3 points) Now use foldr to define a myFilter function that has the same
functionality as filter. Use a lambda expression to define the input function
for foldr.


