1. Use the Well-Ordering Property of integers to prove that every integer greater than 1 is divisible by a prime number. (Hint: For an integer \(n \), consider the set of all factors of \(n \) greater than 1.)

2. For each of the following, find the integer \(x \) with \(0 \leq x \leq 6 \) such that the congruence holds (Don’t use a calculator, use modular arithmetic to simply the calculations):

 (a) \(x \equiv 88 \pmod{7} \)
 (b) \(x \equiv -88 \pmod{7} \)
 (c) \(x \equiv 8^2 \pmod{7} \)
 (d) \(x \equiv 8^3 \pmod{7} \)
 (e) \(x \equiv 8^{10} \pmod{7} \)
 (f) \(x \equiv 6^{11} \pmod{7} \)

3. Suppose \(a \) and \(b \) are integers, and suppose \(m \) is a positive integer. Prove that \(a \equiv b \pmod{m} \) if and only if \(a \mod m = b \mod m \).