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Abstract

Classifiers trained on historical data are deployed in the real
world to automate decisions from hiring to loan issuance.
Judging the fairness and efficiency of these systems, and their
human counterparts, is a complex and important topic studied
across both computational and social sciences. One common
way to address bias in classifiers is to resample the training
data to offset distributional disparities. In the hiring domain,
where results may vary by a protected class, many interven-
tions from the literature equalize the hiring rate within the
training set to alleviate bias. While simple and seemingly
effective, these methods have typically only been evaluated
using data obtained through convenience samples, e.g., data
from a real-world hiring process, introducing selection and
label bias. In the social and health sciences, audit studies, in
which fictitious “testers” (resumes) are sent to subjects (job
openings) in a randomized control trial, provide high-quality
data that support rigorous estimates of discrimination by con-
trolling for confounding factors. We investigate how data
from audit studies can be used to improve our ability to both
train and evaluate automated hiring algorithms. Specifically,
we use data from a large audit study of age discrimination
in hiring to test common resampling methods from the fair
machine learning literature. We find that audit data of real-
world hiring reveals cases where equalizing base rates across
classes appears to achieve parity using traditional measures,
but in fact has an absolute ~ 10% disparity when measured
appropriately. We also show that corrections based on indi-
vidual treatment effect estimation methods combined with
audit study data can overcome these issues, underscoring the
need for rigorous data collection in fairness research.

Code —
https://github.com/AlexandraSar/IllusionOfFairness

Extended version — https://arxiv.org/abs/2507.02152

1 Introduction

A foundational assumption in most work on algorithmic dis-
crimination is that the human-provided class labels in the
training data are improperly influenced, directly or indi-
rectly, by a protected or minoritized characteristic like age,
race, gender, or sexual orientation. Despite this assumption,
we often evaluate machine learning methods on the very
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same flawed data, leading to biased estimates of both fair-
ness and accuracy (Mehrabi et al. 2021). While a truly unbi-
ased annotation is infeasible for most tasks (e.g., recidivism
prediction, hiring, loans), we consider how this issue can be
addressed using data from audit studies of hiring.

In an audit study,1 “testers” (e.g., resumes, inquiries, sim-
ulated patients) are randomly assigned covariates and pro-
tected characteristics and given to humans for assessment
(e.g., callback interview, response, diagnosis). This random-
ization allows rigorous estimation of the amount of discrimi-
nation in a real-world system (Gaddis 2018). To find no dis-
crimination, the difference in outcome (class) that can be
attributed to the protected/minoritized variable should have
no difference (on average) between the groups.

Audit studies ensure the only difference between testers
is the protected attribute (e.g., age) by creating virtual twins
for every applicant. Hence, any difference in outcomes is la-
bel bias. Traditional fairness metrics inherit that bias, while
counterfactual based methods are able to remove it. While
many deployed models are designed to ensure certain fair-
ness metrics, they often ignore the human decisions within
the data, treating observed labels as ground truth, not ac-
counting for label bias. Audit studies measure discrimina-
tion by holding all attributes constant, varying only the pro-
tected ones. This eliminates hidden confounders and allow
us to quantify the causal effect of a protected attribute.

We analyze data collected from a real-world audit study of
hiring to understand age discrimination in applicant callback
decisions. Specifically, 40,208 resumes were sent to 13,371
job openings across 11 cities in the United States (Neumark,
Burn, and Button 2019), and information was recorded on
which resumes received a callback to interview. The re-
sumes were systematically constructed to isolate the effect
of age on callback, controlling for other factors. Causal ef-
fects within hiring are a frequent topic of study for fairness
in ML (Pearl 2010; Bogen and Rieke 2018).

Such a large and rigorously collected sample of human
decisions serves as a useful testbed to investigate the behav-
ior of machine learning systems trained to automate hiring
decisions. In this paper, we study how such data may be

' Audit studies are also known as audit field experiments, corre-
spondence studies, resume studies/experiments, simulated patient
studies, and vignettes — henceforth “audit studies” for short.



used to improve both the training and evaluation of classi-
fiers used in hiring and beyond. First, we explore how audit
study data, unlike typical training data, enables robust es-
timates of the amount of label bias in the data — i.e., the
quantity of labels (human decisions/outcomes) that should
be changed to eliminate discrimination. Second, we evalu-
ate an approach based on the popular notion of individual
treatment effect (ITE) estimation to quantify the likelihood
that each individual record has been subject to discrimina-
tion (i.e., has a biased label) (Corbett-Davies et al. 2023).
Based on these estimates, we propose an algorithm to gen-
erate de-biased versions of the original data. We find this
approach allows us both to better estimate the true accuracy
and fairness of classifiers, as well as to improve the quality
of classifiers trained on such data.

Our key contribution is a rigorous empirical analysis us-
ing audit study data in the hiring domain to evaluate:

RQ1: How does removing label bias with ITE in the test-
ing data influence estimates of accuracy and fairness of
classifiers trained on audit study data? We find that tra-
ditional approaches can create an illusion of fairness, in
which methods that appear fair when evaluated using stan-
dard approaches are in fact shown to exhibit significant dis-
crimination once label bias is reduced.

RQ2: How does removing label bias with ITE in the
training data influence the accuracy and fairness of clas-
sifiers trained on audit study data? Training on debi-
ased data reduces measures of disparity by up to 60% com-
pared to traditional pre-processing approaches that equalize
the base rate of protected attributes.

RQ3: How does the magnitude of discrimination in the
human audit data influence the results? When we re-
sample data to double the amount of human discrimination
in the audit data, we find a commensurate increase in the in-
accuracies of traditional fairness metrics. Our proposed ITE
adjustment appears more robust, though classification accu-
racy does degrade in this setting.

RQ4: If audit study data is unavailable, how does se-
lection bias affect the accuracy and fairness of result-
ing classifiers? When we reintroduce selection bias into
the dataset, we find that the illusion of fairness can become
more extreme, with measures of fairness diverging in magni-
tude and sign — e.g., a classifier that appears discriminatory
against younger applicants is in fact discriminatory against
older applicants.

2 Related Work

Auditing Systems and Processes Audit studies are field
experiments where traits of real or hypothetical individu-
als are randomized to test their impact on outcomes (Gad-
dis 2018). “Testers” (e.g., resumes, emails) differ only in
the traits being studied, on average, isolating the effects of
bias. Correspondence studies are audit studies conducted re-
motely, e.g., through emails, messaging, or job applications.
(Collins et al. 2021; Evans et al. 2015; Steiner, Atzmiiller,
and Su 2016). Recently, these approaches have also been ap-
plied to audit algorithms (Bandy 2021; Vecchione, Levy, and

Barocas 2021), evaluating both their fairness and accuracy.

However, bias can originate from many directions — the
model, the metrics, or the data (Hutchinson and Mitchell
2019). A central goal of “fair machine learning” systems
is to prevent such harm across groups (Li, Goel, and Ash
2022a). This means that the result for subgroups should be
comparable — people of similar circumstances should re-
ceive similar outcomes independent of protected character-
istics. The larger framework of auditing and evaluating algo-
rithms is a broad and active topic of research (Mitchell et al.
2021; Mehrabi et al. 2021).

Auditing Hiring The hiring process generally consists of
three stages (Stredwick 2005; Bogen and Rieke 2018): job
planning/analysis, opening advertisement/recruitment, and
interview/hire. Like nearly all audit studies, we focus on the
critical interview (callback) stage (Gaddis 2018).

Extensive research documents bias in traditional hir-
ing (Lippens, Vermeiren, and Baert 2023). Audit studies
show that older applicants, particularly women, receive
fewer callbacks (Lahey 2008; Farber, Herbst, and Silver-
man 2019; Neumark, Burn, and Button 2019; Burn et al.
2020). Bias can be unintentional — e.g., when too many qual-
ified resumes overwhelm reviewers or when irrelevant cri-
teria are used, knowingly or not (Derous and Ryan 2018).
Even minor instances of subgroup bias can lead to signifi-
cant discrimination (Hardy et al. 2022). To reduce manual
labor, some companies now use Al for resume screening,
but this raises concerns over defining fair criteria. While
anti-discrimination laws exist, ensuring fairness becomes
harder with complex systems. Public perception of hiring
algorithms is mixed, with many viewing them as less fair
(Langer, Konig, and Papathanasiou 2019; Langer et al. 2020;
Newman, Fast, and Harmon 2020).

Label Bias and Algorithmic Fairness Within algorithmic
fairness (Barocas, Hardt, and Narayanan 2023), there is an
emerging line of work focusing on the issue of label bias —
a recognition that often the human decisions, which serve
as ground truth, are themselves influenced by bias. Fish,
Kun, and Lelkes (2016) were among the earliest to note
this problem in algorithmic fairness, which they explored
via simulation studies. Building on this, Wick, Panda, and
Tristan (2019) propose that when biases such as selection
and label bias are accounted for, the trade-off between accu-
racy and fairness can diminish or even disappear. To support
this claim, they propose evaluating fairness when unbiased
ground truth labels are available. As in Fish, Kun, and Lelkes
(2016), simulation studies are required to explore data that
does not have selection or label bias.

Similarly, Verma, Ernst, and Just (2021) focus on iden-
tifying and removing training instances affected by label
bias in historical datasets. To identify such instances, they
find matched pairs of instances that receive different labels,
and assume that the one with the least confident classifica-
tion decision is the one that has received discrimination. As
above, this work relies on synthetically generated instances
for training and testing. Finally, Jiang and Nachum (2020)
present a mathematical framework for mitigating label bias
by assuming that there is an existing underlying unbiased la-



bel function. They introduce a re-weighting scheme that ad-
justs the significance of some training instances to account
for label bias. However, this approach is generally designed
for fairness metrics that do not require unbiased labels (e.g.,
demographic parity (Dwork et al. 2012)). For other mea-
sures, additional assumptions and estimates are required.

Contribution. (1) Using audit study data to analyze algo-
rithmic fairness, we are able to control for selection bias and
rigorously quantify the amount of label bias present without
relying on synthetic data. (2) We introduce a new method to
correct for label bias when audit data is available using in-
dividual treatment effect (ITE) estimators. And (3) We pro-
vide empirical evidence demonstrating that traditional fair-
ness evaluation metrics, when applied to conventionally bi-
ased labels that arise from samples of convenience, may pro-
duce misleading conclusions about algorithmic fairness.

3 Training and Evaluating Classifiers Using
Human Audit Study Data

Our data is from a large-scale field experiment investigat-
ing age discrimination in hiring (Neumark, Burn, and Button
2019). Over 40,000 synthetic resumes were created and sent
in response to online postings for four types of job positions:
retail sales, administrative assistants, janitors, and security.
The measure was whether the synthetic applicant received a
callback from the potential employer. The study’s aim was
to determine whether callback rate was influenced by age,
all else being equal, comparing young (age 29-31), middle-
aged (age 49-51), and old (age 64-66) applicants.

The goal of such human audit studies is to rigorously es-
timate potential discrimination, considerable care is given to
how resumes are created. Resumes of comparable skill and
experience were sent to the same ad — varying only the age
of the applicant — to isolate the effect of age on callback.?
The study found strong overall evidence of age discrimi-
nation, with callback rates significantly lower for middle-
aged (] 18%) and older (| 35% ) applicants, as compared to
younger applicants, despite the comparable resumes.

3.1 Training Classifiers on Audit Study Data

We study the behavior of a machine learning system trained
to replicate the human decisions in the data. This simulates
a scenario in which a firm attempts to automate the callback
decision-making process based on historical decisions. As
Neumark, Burn, and Button (2019) rigorously show, there
is considerable discrimination present in this data; we wish
to study its effect on the fairness and accuracy of resulting
classifiers, as well as our ability to measure these values.
We train classifiers to predict the callback variable Y &
{0, 1} given applicant attributes X € R?, and the protected
age attribute A € {y, o}, with labels y for younger appli-
cants and o for older applicants.> Applicant attributes in-
clude demographics (gender, location), employment status,

>There are many nuances here (e.g., older applicants should
have longer histories) (see Neumark, Burn, and Button (2019))

3For simplicity, we collapse middle and older applicants into a
single age group called “older”, with the remainder as “younger”.

Age Group Callback | No Callback Total
Young 2,505 (19%) | 10,896 (81%) | 13,401
Old/Middle | 3,587 (14%) | 21,945 (86%) | 25,532
Total 6,095 (16%) | 32,892 (84%) | 38,987

Table 1: Callback data by age group.

foreign language skills, typing speed, college experience,
and volunteering history, see the extended version for more
details on the data. One key variable we will explore is Span-
ish, which has a consistent positive correlation with callback
in the audit data. We explore its use as a confounder since
by design it is uniformly distributed in the audit data, in-
dependent of age. While there are studies on the sensitivity
of unmeasured and unobserved confounders, in our case we
know the effect of our confounders. Other studies of these
phenomena often rely on simulations or parameterized mod-
els of these interactions that are not directly present in the
dataset, a key advantage of audit studies, and a fact that we
are among the first to explore (Kilbertus et al. 2020; Byun
et al. 2024).

We use the audit study data as a labeled dataset D =
{(Xy,A1,Y1),..., (X, An, Yy,)}. Table 1 displays the
callback rates by age group, showing a roughly 5% percent-
age point greater callback rate for younger applicants over
older applicants. We experiment with two standard classi-
fication models, random forests and neural networks (Pe-
dregosa et al. 2011), performing cross-validation to evalu-
ate fairness and accuracy. As is typical in many studies on
fairness, we focus on these standard models and not more
complex ones as our goal is to understand the effects of the
data itself (Machado, Charpentier, and Gallic 2025; Fawkes
et al. 2024).

3.2 Evaluation Measures

To measure accuracy while accounting for class imbalance,
we use Area Under the ROC Curve (AUC) (Fan, Upadhye,
and Worster 2006). To measure fairness, we focus primarily
on False Positive Rate Disparity (FPRD); FPRD is the dif-
ference in false positive classification rates between young
and old applicants:

FPRD = FPR, - FPR,

with false positive rate defined as standard (Corbett-Davies
et al. 2023):
_ FP, . FPR, - FP,

FP,+TN, FP,+TN,
where F'P (false positives) is the number of negative in-
stances incorrectly classified as positive, TN (true nega-
tives) is the number of negative instances correctly classified
as negative, and F'P+T'N is the total number of actual neg-
ative instances (AN). Additionally, we stratify across fea-
tures, with a 20/80 split for test-train.

FPRD will be positive when the classifier discriminates
against older applicants, negative when it discriminates
against younger applicants, and zero when the classifier does
not discriminate based on age. Within the hiring setting, a

FPR,



Group AN | FP | FPR | FPRD

Y (Before) 100 | 30 0.3 0.1
O (Before) 100 | 20 0.2 :
Y (| callbacks) | 120 | 45 | 0.375
O (7 callbacks) | 80 5 | 0.0625

0.3125

Table 2: Reducing label bias — increasing true callbacks (re-
ducing actual negatives) for older applicants and decreasing
true callbacks (increasing actual negatives) for younger ap-
plicants — affects False Positive Rate Disparity (FPRD).

false positive can be viewed as an applicant receiving a call-
back when they should not have. Thus, if FPRD is positive,
then the rate at which unqualified younger applicants receive
callbacks is higher than that of unqualified older applicants.
To ensure reliable comparison across classifiers with dif-
ferent positive prediction rates, we standardize the number
of predicted positives by fixing a common callback budget.
As the original dataset has an overall callback rate of 16%,
we enforce the same rate during evaluation. For each classi-
fier, we sort test instances by the predicted probability of a
callback and label the top 16% as predicted positive.

4 Label Bias and the Illusion of Fairness

The primary problem in using human-provided labels from
historical data, i.e., samples of convenience, to train and
evaluate a classifier is the presence of label bias (Jiang and
Nachum 2020). That is, for each applicant ¢, we only ob-
serve the label y;, which we know is the result of a decision-
making process influenced by age discrimination. Unfortu-
nately, we cannot observe the idealized label y; that would
result from a process free of discrimination. This label bias
will corrupt our measures of both accuracy and fairness. A
classifier that prefers younger applicants to older applicants
may appear more accurate, as it will better reflect human-
generated labels. Likewise, measures of discrimination such
as FPRD may be underestimated when computed using data
with label bias. This is because removing label bias results
in fewer young applicants getting callbacks and more older
applicants getting callbacks, altering the false positive rates
of each group. The audit study allows us to interrogate this
in direct ways since across the dataset, applicants are con-
structed to be independent of confounders like age.

Consider the example in Table 2 of how removing label
bias can reduce fairness. Initially, both groups have the same
number of actual negatives (AN), though the classifier has a
10 percentage point higher F'PR for younger. To remove
label bias, we assume that 20 younger applicants who were
given callbacks in the human audit study should not have
been; of these, 15 were labeled as callbacks by the classi-
fier. As a result, for the younger group AN, increases to
120, while F'P, increases to 45, resulting in an increase in
FPR, from 0.3 — 0.375. Conversely, for the older group
AN, decreases to 80, while F'P, decreases to 5, resulting in
a decrease in FPR,, from 0.2 — 0.0625. Hence, removing
label bias affecting 40 applicants increased the FPRD esti-
mate from 0.1 — 0.3125.

Algorithm 1: Repairing label bias with ITE

1: Fit a random forest classifier on training data Diyain
Compute age ITE estimates 7(x;) for each instance in the test
set Diest
while callback rate is not equal between age groups do
# Flip positive to negative for younger group
Find ¢ with largest 7(x;) where Y; = 1, A; =1
SetY; + 0
# Flip negative to positive for older group
Find j with smallest 7(x;) where Y; =0, A; =0
SetY; + 1
: end while

»
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This illustrates how sensitive fairness metrics are to the pres-
ence of label bias, and underscores the need to more rigor-
ously assess discrimination in labeled data. Otherwise, label
bias can create an illusion of fairness, causing classifiers to
appear less discriminatory than they are.

5 Repairing Label Bias with Individual
Treatment Effect Estimation

If we were able to remove label bias, we would not only im-
prove the reliability of our fairness measures, but also create
cleaner training data to fit the classifier in the first place.
However, doing so raises two questions: (1) Which appli-
cants should have their callback labels amended? and (2)
How many labels do we need to amend?

Typical samples of convenience make these questions dif-
ficult to answer. For example, if younger applicants tend to
be more qualified in the applicant pool, it is not clear what
the true callback rates should be for each group. In an au-
dit study, however, by design we expect equal callback rates
between the two age groups. This is the motivation for care-
fully controlling other resume attributes when constructing
the synthetic resumes. Thus, the answer to our second ques-
tion is: amend the labeled data until the callback rates are
equal for younger and older applicants.

We amend labels in cases where age was a decisive fac-
tor in the callback decision, since those applicants are the
ones whose outcomes were directly influenced by age. So,
for younger applicants who received a callback, if they had
been older applicants, would they still have received a call-
back? For older applicants who did not receive a callback, if
they had been younger, would they have received a callback?

Framed this way, we have a counterfactual question —
what would the outcome have been for an applicant if they
had been in a different age group? To answer this, we build
on a long line of work in the computational, social, and
medical sciences on individual treatment effect estimation
(Carey and Wu 2022; Plecko, Bareinboim et al. 2024).

Given the audit study data D =
{(X1,A1,Y1),..., (X, A, Ys)}, we treat the age
variable A; as a binary freatment indicator representing
whether ¢ is in the younger treatment (A4; = 1) group
or older control (4; = 0) group, and Y; is the observed
callback outcome for individual i. We are interested in
quantifying the causal effect that treatment A has on the
outcome Y. The fundamental problem of causal inference is



that we can only observe one outcome per individual, either
the outcome of an individual receiving a treatment or not.
Thus, we do not have direct evidence of what might have
happened had we given individual ¢ a different treatment.
Rubin’s potential outcome framework is a common way
to formalize this problem (Rubin 1974). Let Y(") indicate
the potential outcome an individual would have gotten had
they received treatment (A = 1), and similarly let Y(9) indi-
cate the outcome an individual would have gotten had they
received no treatment (A = 0). While we cannot observe
both YV and Y (© for the same individual, we can now for-
mally express the quantity of interest. We are interested in
the Individual Treatment Effect (ITE), which is the expected
difference in outcome for a specific type of individual:

7(x) = E[YV|X =x] —E[Y©|X = x] 1)

that is, the treatment effect for individuals where X = x.
For example, if the covariate vector represents the (gender,
height) of a person, then the ITE will estimate treatment ef-
fects for individuals that match along those variables.
Using standard assumptions, we estimate ITE as follows:

#x)=E[Y|[A=1,X=x]-E [Y|A:0 X=x] (2

1
Lz Ee L O

1€51(x) 1€S (x)

where Sp(x) is the set of individuals ¢ such that X; = x
and A; = 1, and similarly for Sy(x). In other words, Equa-
tion (3) simply computes, for all individuals with covariates
equal to x, the difference between the average outcome for
individuals in the treatment group and the control group. For
example, if X = x indicates individuals with (gender=male,
height=5), A = 1 indicates that an individual is in the
younger group, and A = 0 that they are in the older group,
then 7(x) is the difference in average outcome between in-
dividuals who are in the young group and those who are not.

A key challenge for Equation (3) in practice is that X
may be high dimensional, leading to a small sample where
X = x. In the extreme case, there may be only one instance
where X = x. We adopt the virtual twins approach (Fos-
ter, Taylor, and Ruberg 2011), a two-step procedure to esti-
mate ITE. First, it fits a random forest with all data (control
and treatment samples), where each is represented by inputs
(X, A;) and outcome Y;. Then, to estimate the ITE for 4,
it computes the difference between the predicted values for
treatment (X;, A; = 1) and control (X;, A; = 0). The name
“virtual twin” derives from the fact that for each control in-
put (X;, A; = 0), we make a copy (X;, A; = 1) as treat-
ment input that is alike in every way to the control input ex-
cept for the treatment variable. Similarly, for each treatment
input (X;, A; = 1), we make a copy (X;, A; = 0).

If Y (x;,1) is the posterior probability of callback (Y; =
1) from the random forest for input (X; = x;, A; = 1),
and Y (x;,0) is the probability of callback for input (X; =
x;, A; = 0), then the virtual twin ITE estimate for 4 is

#(x1) = V(xi,1) = Y (x;,0). )

Thus, 7(x;) is the increase in probability of callback for be-
ing younger.

Figure 1: Causal diagram depicting our approach to injecting
selection bias in audit study data. Note that because we use
audit data there is no actual relationship between Spanish
and Age in our dataset, but because we have audit data we
can simulate such a relationship and observe the effects.

Algorithm 1 first computes all ITE estimates, then itera-
tively changes the callback labels most likely influenced by
discrimination. At each iteration, we assign one younger ap-
plicant with a callback to have a no-callback label, and one
older applicant with a no-callback label to have a callback
label. We repeat until callback rates are equal between age
groups, as expected in a world with no discrimination.

6 Experiments

The goal of our experiments is to answer the research ques-
tions from the introduction, comprehensively evaluating the
effects of label bias on classifier training.

* RQI1: How does removing label bias with ITE in the test-
ing data influence estimates of accuracy and fairness of
classifiers trained on audit study data?

* RQ2: How does removing label bias with ITE in the
training data influence the accuracy and fairness of clas-
sifiers trained on audit study data?

* RQ3: How does the magnitude of discrimination in the
human audit data influence the results?

* RQ4: If audit study data is unavailable, how does se-
lection bias affect the accuracy and fairness of resulting
classifiers?

To do this, we consider three types of data pre-processing:
We consider three types of data pre-processing:

1. Base Rate (BR): Do not perform any manipulation of
either the training or testing data.

2. Equalized Base Rate (EBR): A simple yet common pre-
processing technique to improve fairness is to downsam-
ple data to ensure equal class distributions across pro-
tected classes (Kleinberg, Mullainathan, and Raghavan
2016; Li, Goel, and Ash 2022b). To do so, we delete from
the training set at random older applicants who did not
get a callback until the callback rates are equal for the
two age groups.

3. Individual Treatment Effect Repair (ITE): The
method from Algorithm 1.

To further investigate the impacts of these interventions
separately on the training and testing data, we consider the
following settings:



e ITE Train & Test: Apply ITE to both training and test.
To do so, we perform cross-validation, estimating ITE for
the test set in each fold. Then, for each fold, we apply Al-
gorithm 1 separately for the train and test sets, ensuring
equal callback rates between groups in both sets.

* EBR Train - ITE Test: Apply EBR to the training data,
but ITE to the testing data.

Comparing EBR with (EBR Train - ITE Test) allows us to
isolate the effect of label bias in the testing data on fairness.

We consider two classification models: Random Forest
and Multi-Layer Perceptron. For RF, key parameters are:
number of estimators=50, minimum samples per split=2,
minimum samples per leaf=1. For MLP, we use three hid-
den layers of sizes (128, 64, 32), ReLU activation functions,
and the Adam optimizer. All experiments are conducted in
scikit-learn and available on GitHub (Pedregosa et al. 2011).
Observe that we use AUC as our metric in the following,
however the accuracy of the RF model is 77.62% (S.D.
0.0025) and MLP 78.32% (S.D. 0.0046). These results are
in line with classifiers in many recent fairness papers (Zafar
et al. 2017), indicating that our models are reasonable.

6.1 Simulating Selection Bias

For RQ4, we need data that reflects non-audit study data, i.e.,
we must reintroduce the sample selection bias that pervades
samples of convenience normally used. Selection bias oc-
curs when the distribution of data inadvertently introduces
undesired correlations between the features pertaining to a
protected attribute and the class label. Suppose that Spanish
is predictive of callbacks, and that younger applicants are
more likely to speak Spanish, illustrated below. Figure 1 dis-
plays the causal model for such a hypothetical scenario. The
selection bias of Spanish may introduce an unintended rela-
tionship between age and callback. By contrast, because our
data is from an audit study, Spanish is not correlated with
age by design. However, we use Spanish as it has consis-
tent positive correlation with callback, simulating this effect
when we resample our data to introduce this effect for study.

To study the impact of selection bias, we conduct addi-
tional experiments where we sample the original data to vary
the correlation between age and Spanish, while holding con-
stant the relationship of Spanish and callbacks. To increase
the prevalence of Spanish among younger applicants, we
drop at random older applicants with Spanish and younger
applicants without Spanish, while keeping the callback rate
of Spanish applicants constant. We consider a range of val-
ues for the conditional probabilities P(Spanish = 1|A = y)
and P(Spanish = 1|A = o) to investigate how disparity in
Spanish by age influences system behavior.

7 Results

RQ1: Effect of label bias in test data. Figure 2 displays the
main AUC versus FPRD results, with mean and standard de-
viation computed from 5-fold cross-validation. We first fo-
cus on the effects of debiasing the test data with ITE. For
random forest (Figure 2a), the Base Rate has FPRD ~ 0.038,
exhibiting similar discrimination against older applicants as
observed in the original dataset. Applying the Equal Base

Rate intervention, and evaluating on the unmodified test set,
at first appears to have removed the discrimination. Indeed,
EBR seems to have over-adjusted, now showing a prefer-
ence for older applicants (FPRD ~ —0.031). However, we
observe a dramatic difference when we repair the label bias
in the test set. EBR Train - ITE Test shows that the discrim-
ination against older applicants remains, even after equaliz-
ing base rates, and indeed the sign of FPRD changes when
label bias is removed (FPRD ~ 0.042 vs. —.031 for EBR).
This discrepancy of 0.073 in FPRD suggests that label bias
can have dramatic impacts on fairness.

For MLP (Figure 2b), the relative comparisons between
the methods are largely similar. Noticeable differences are a
somewhat higher AUC overall compared to RF (e.g., Base
Rate 0.576 — 0.59), as well as much larger values for
FPRD. For example, EBR Train - ITE Test increases FPRD
from 0.042 using RF to 0.095 using MLP. This suggests that
models with more degrees of freedom may be even more
susceptible to label bias. Thus, in answering RQ1, we see
that simply employing EBR can give the illusion of fairness,
but in reality still exhibits an absolute ~ 10% age disparity.

RQ2: Effect of label bias in training data. Continuing
the discussion of Figure 2, we next compare the result of
ITE Test & Train, which performs the ITE label debiasing
on both the training and test sets. This results in the lowest
amount of discrimination (FPRD = 0.017), though this does
coincide with a roughly 1% point decrease in AUC. When
compared with EBR Train - ITE Test, we see that ITE Test
& Train reduces FPRD from 0.042 — 0.017, a 60% reduc-
tion in disparity. Even though EBR ensures that the two age
groups receive equal callback rates in the training data, the
label bias remains. Thus, under-qualified younger applicants
receive callbacks at higher rates than under-qualified older
applicants. And, conversely, qualified older applicants are
more likely to not receive a callback than qualified younger
applicants. By learning these patterns, the resulting classifier
replicates this discrimination in the test set.

RQ3: Effect of label bias magnitude. To investigate the
impact of the amount of human discrimination in the origi-
nal audit data, we create a modified version of the data with
more discrimination than the original. Specifically, we sam-
ple the original data by removing at random older applicants
who received a callback until the callback difference be-
tween age groups increases to 10 percentage points, roughly
double the original difference. Figure 3 shows the results
for all methods. We can see that the overall patterns remain.
Critically, we observe that the discrepancies in evaluation
measures exhibit a commensurate increase in severity due
to the doubling of discrimination. For example, for random
forest (Figure 3a), EBR has FPRD ~ —.038, compared to an
FPRD =~ 0.133 for EBR Train-ITE Test. This is a discrep-
ancy of 0.171, more than double the discrepancy of 0.073 in
the original results in Figure 2a. Again, without adjusting for
label bias, the sign of the discrimination is estimated incor-
rectly. These suggest that label bias can be more detrimental
precisely in domains with large amounts of discrimination.
This aligns with other existing studies on the effect of selec-
tion and label bias on synthetic data (Favier et al. 2023).

Encouragingly, ITE Test & Train appears to maintain only
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Figure 2: Accuracy (AUC) vs. fairness (FPRD) by method. FPRD > 0 indicates discrimination against older applicants.
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Figure 3: Accuracy (AUC) vs. fairness (FPRD) by method. Human discrimination in the audit data is doubled from that of
Figure 2. FPRD > 0 indicates discrimination against older applicants.

modest discrimination even in this more extreme setting
(FPRD =~ 0.049 vs. 0.017 in the original), which is also
observed in the neural network results (Figure 3b). While
discrimination does grow, the lower starting point suggests
the ITE approach can be more robust to higher levels of dis-
crimination in the audit data. Unfortunately, this does appear
to come at a decrease in AUC of roughly 2.1% points.

RQ4: Effect of selection bias. Finally, we analyze how
results vary when we reintroduce selection bias into the
dataset. Figure 4 plots FPRD as we vary Spanish dispar-
ity by age group. The x-axis P(Spanish = 1|4 = y) —
P(Spanish = 1|A = o) shows much more likely younger
applicants are to speak Spanish than older applicants. For
example, when z = 0.8, P(Spanish = 1|4 = y) = 0.9
and P(Spanish = 1|A = o) = 0.1. In the sample, 90%
of younger vs. 10% of older applicants speak Spanish. With
callback rates otherwise constant, Spanish being desirable
leads to greater discrimination (higher FPRD) against older
applicants as their Spanish-speaking share declines.

As in Figure 2, EBR differs markedly depending on
whether the test set has been de-biased. This is most pro-
nounced when Spanish Age Disparity is 0.8, where for EBR
FPRD ~ —.08 and for EBR - ITE Test FPRD ~ 0.145 for
random forest (Figure 4a). The discrepancy is even larger
for the neural network, which shows a FPRD discrepancy of
0.38 (—0.11 — 0.27, Figure 4b). Here, the difference is not
only large but also reverses direction from against younger
applicants to against older applicants. E.g., for the MLP, two
identically trained models can show to either have a 0.11
discrimination towards older applicants, or a 0.27 against
younger ones, depending on whether test data is repaired.

Although the ITE Test & Train approach consistently
achieves the lowest disparity on debiased test sets, it still
exhibits a bias in favor of younger applicants under the most
extreme conditions (e.g., at a bias level of 0.8). This further
reinforces the value of audit study data, showing the limita-
tions of relying solely on statistical corrections. By random-
izing both covariates and protected attributes, audit studies
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Figure 4: Fairness comparison as selection bias due to Spanish varies by age group. Spanish Age Disparity is P(Spanish =
1|A = y) — P(Spanish = 1|A = 0), i.e., larger = values mean larger Spanish in younger applicants.

offer a cleaner and more controlled source of training data
that can mitigate the influence of sampling bias.

8 Discussion and Limitations

We demonstrate that achieving group parity in observed out-
comes, e.g., callback rates, is an insufficient pre-processing
intervention to ensure fairness. Interventions that equalize
base rates but ignore label bias may create the illusion of
fairness, leaving meaningful disparities unaddressed. This
has consequences for both researchers and practitioners in
domains like hiring, where there are interactions between
features and the hiring process (Schumann et al. 2020).

In complex domains like hiring, feature interactions mean
that resampling to equalize callback rates can obscure dis-
crimination, especially when the original labels stem from
biased decisions. A system that appears fair in terms of ag-
gregate outcomes may still produce systematically different
errors across groups. This underscores the need for fairness
metrics and interventions that go beyond surface-level par-
ity and consider the causal mechanisms of disparities. We
show the importance of richer evaluation data — audit stud-
ies or experiments — that precisely identify when and how
discrimination occurs. Without it, fairness assessments risk
relying on biased labels and flawed assumptions.

Limitations. While our study provides a novel approach
to evaluating fairness using audit study data and individual
treatment effect estimation, several limitations remain. Au-
dit studies better approximate discrimination, but like oth-
ers they still lack access to the underlying ground truth of
applicant quality. This limits our ability to definitively as-
sess whether corrected labels fully reflect fair outcomes. Fu-
ture work should investigate rigorous simulation studies to
better understand how robust these approaches are to dif-
ferent distributions of label bias. Our analysis considers a
limited set of fairness interventions and measures. While
we demonstrate the shortcomings of base rate equalization
and propose an ITE-based alternative, a larger comparison

with other debiasing methods — e.g., adversarial learning,
reweighting schemes, or post hoc calibration (Pessach and
Shmueli 2022) — would provide a broader understanding of
label bias. Finally, the ITE approach may introduce new bi-
ases depending on which instances it modifies. Hence ex-
panding our framework to other techniques is a key step.

9 Conclusion and Future Work

We introduced a novel approach using human audit study
data to better measure and mitigate algorithmic fairness in
the presence of label bias. Our method leverages Individual
Treatment Effect (ITE) estimates to assess whether individ-
uals receive fair predictions and repairs the data accordingly.
Our empirical results indicate that this approach leads both
to fairer predictions can reduce the “illusion of fairness” of
traditional approaches that do not account for label bias.
These results point toward the need for future studies that
can efficiently incorporate audit studies into Al-augmented
decision making processes. Future studies should investigate
rigorous simulation studies to test robustly how these ap-
proaches are to different distributions of label bias, including
other protected attributes (e.g., race or gender). We evaluate
our methods on a single dataset focused on age discrimi-
nation in hiring. This high-impact domain warrants future
work across more datasets and settings to test generalizabil-
ity. Our overall results underscore the importance of collect-
ing data within the fair machine learning ecosystem, and not
relying on simple data repair methods.
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