
Forecasting COVID-19 Vaccination Rates using Social Media Data
Xintian Li

xli71@tulane.edu
Tulane University

New Orleans, Louisiana, USA

Aron Culotta
aculotta@tulane.edu
Tulane University

New Orleans, Louisiana, USA

ABSTRACT
The COVID-19 pandemic has had a profound impact on the global
community, and vaccination has been recognized as a crucial in-
tervention. To gain insight into public perceptions of COVID-19
vaccines, survey studies and the analysis of social media platforms
have been conducted. However, existingmethods lack consideration
of individual vaccination intentions or status and the relationship
between public perceptions and actual vaccine uptake. To address
these limitations, this study proposes a text classification approach
to identify tweets indicating a user’s intent or status on vaccina-
tion. A comparative analysis between the proportions of tweets
from different categories and real-world vaccination data reveals
notable alignment, suggesting that tweets may serve as a precursor
to actual vaccination status. Further, regression analysis and time
series forecasting were performed to explore the potential of tweet
data, demonstrating the significance of incorporating tweet data in
predicting future vaccination status. Finally, clustering was applied
to the tweet sets with positive and negative labels to gain insights
into underlying focuses of each stance.

CCS CONCEPTS
• Information systems→Clustering and classification; •Com-
puting methodologies→ Information extraction; • Human-
centered computing → Social media.
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1 INTRODUCTION
The Coronavirus (COVID-19) pandemic has had a far-reaching and
enduring impact on the global community over the past few years,
resulting in millions of cases of infection and death and leading
to a significant socio-economic crisis [5]. As a means to curb the
progression of the pandemic, vaccination has been recognized as a
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crucial intervention. The success of the vaccination effort is contin-
gent not only on the efficacy and safety of the vaccine, but also on
the level of acceptance among the population. To gain insight into
COVID-19 vaccination acceptance rates and the factors that influ-
ence them, survey studies have been conducted extensively across
a variety of countries and regions [18]. However, these studies are
often costly and may not be able to keep pace with the dynamic
changes as the pandemic and the vaccination process evolve. Given
that a substantial number of individuals are now inclined to share
their views and activities on social media platforms, these platforms
provide a wealth of information regarding individual behaviors and
attitudes towards vaccination.

A multitude of studies have been conducted in recent times
to understand public perceptions of COVID-19 vaccines through
the analysis of Twitter data [6, 7, 11, 17, 20]. While these studies
provide valuable insights into public perceptions, they also exhibit
several limitations. Firstly, they lack the consideration of individual
vaccination intentions or status in the analysis of tweets, which is
a crucial aspect of determining the actual level of vaccine uptake
and the extent to which public perception influences vaccination
behavior. Secondly, there is limited information available on the
relationship between public perceptions and the actual trend in
vaccine uptake, which is a critical factor in ensuring the effective
distribution and coverage of vaccines.

Tomitigate the limitations of existing methods, we propose a text
classification approach for the identification of tweets that reveal a
user’s intent or status on vaccination. Our approach involves the
geolocation of tweets related to vaccination after the widespread
vaccine rollout in December 2020, with a focus on tweets originat-
ing within the United States. A total of 1,600 tweets were annotated
into four categories based on their vaccination intent or status
(vaccinated, positive, neutral, or negative), and a text classifier was
trained on this data, achieving an AUC of 0.81. Using the US tweets
labeled by our classifier, we conducted a comparative analysis be-
tween the proportions of tweets from different identified classes
and real-world vaccination data, revealing notable alignment (up
to a correlation of 0.84) between data trends. This suggests that
tweets related to vaccination may serve as a precursor to the actual
vaccination status. Moreover, regression analysis was performed
using state-level tweet and vaccination data, demonstrating a mod-
erate association between the proportions of tweets and future
vaccination rates. To further explore the potential of tweet data,
we also proposed a time series forecasting model for predicting fu-
ture vaccination status, and our results indicate that incorporating
tweet data significantly reduces forecasting error. Additionally, we
applied a simple clustering method to the tweet sets with positive
and negative labels to gain insights into the underlying focuses of
each stance.

https://doi.org/10.1145/3543873.3587639
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2 RELATEDWORK
As the Internet has emerged as a prevalent source of health informa-
tion, individuals frequently resort to obtaining vaccine information
from social media platforms [8]. In addition to acquiring informa-
tion on vaccines, individuals often use social media to seek social
support and engage in conversations with their peers [24]. Hence,
social media can be viewed as a crucial channel through which re-
searchers can gain insights into public perceptions of vaccines and
public health practitioners can disseminate accurate information
to facilitate informed decision-making regarding vaccination.

Studies have revealed that social media has a substantial impact
on public attitudes towards vaccines, particularly in contributing
to vaccine hesitancy [15, 23]. Given the role played by online mis-
information in fostering vaccine hesitancy [10], researchers are
making sustained efforts to understand its influence. For instance,
Muric et al. [12] constructed a dataset concerning anti-vaccine con-
tent and COVID-19 vaccine misinformation by analyzing historical
tweets from Twitter accounts that posted tweets containing anti-
vaccine keywords. Pierri et al. [14] evaluated the impact of online
misinformation on U.S. COVID-19 vaccinations by determining
the prevalence of misinformation based on geolocated tweets ref-
erencing low-credibility sources, and comparing the results with
vaccine survey and uptake data. Additionally, Sharma et al. [19]
investigated the characteristics of misinformation and conspiracy
groups by identifying suspicious coordinated accounts in Twitter
data collected on COVID-19 vaccines.

Gaining an understanding of public perceptions of vaccines
is essential for devising effective strategies to influence vaccine
decision-making. To that end, many researchers have sought to
capture public perceptions from various angles by using social me-
dia data. For instance, Saleh et al. [17] analyzed 2.4 million English
tweets related to the COVID vaccine during its development, using
sentiment and emotion analysis, demographic inference, and topic
modeling to examine the evolution of public perception. Huangfu
et al. [7] adopted a similar sentiment-based topicmodeling approach
to study COVID-19 vaccine tweets following vaccine rollout. Lappe-
man et al. [9] investigated tweets expressing negative sentiment
towards COVID-19 vaccines in the U.S. and U.K. to reveal the un-
derlying themes. Luo et al. [11] explored public perceptions of the
COVID-19 vaccine by identifying prominent discussion topics on
social media platforms using semantic network analysis. Shi et al.
[20] compared the psycho-linguistic features of anti-vaxxers on
Twitter with those of pro-vaxxers, with the two competing groups
being identified by confirming the top users in each community
cluster detected. Di Giovanni et al. [6] constructed a tweet dataset
that was semi-automatically labeled based on selected hashtags,
and then trained a binary classifier to predict the stance of tweets
towards vaccines. Zhou and Li [25] devised a framework utilizing
autoregressive models to forecast vaccination uptake rates, which
draws on both conventional clinical data and innovative web search
queries gleaned from Google Trends.

The identification of attitudes towards vaccines in online posts
has primarily relied on lexicon and rule-based sentiment analy-
sis tools. However, these methods do not effectively capture the
individual’s intent or stance on vaccination. While some studies
have conducted temporal analysis of sentiment polarity towards

COVID-19 vaccines, there is a lack of understanding about the rela-
tionship between these discourses and actual vaccination trends.
In this context, this paper contributes to the field by presenting
a methodology for identifying tweets expressing vaccine intent,
conducting temporal and regression analysis to understand factors
impacting vaccine decisions, and proposing a forecasting model to
predict future vaccination status.

3 DATA
3.1 Twitter data
In order to gain insight into public perceptions of COVID-19 vac-
cines in the US following the vaccine roll-out, we utilized Twitter
content as our primary source of information. To collect tweets re-
lated to individual vaccination intent, we employed the full-archive
search endpoint provided by the Twitter API [22] to search for
all public tweets from December 19, 2020 to August 6, 2021 con-
taining specific keywords, including "vaccine", "vaccinated", "second
shot", "my shot", and "vaxxed". The choice of these keywords was
predicated on their ability to capture vaccination intent, notwith-
standing the possibility of missing out on negative aspects such
as misinformation or conspiracy theories that may also influence
public perception. To ensure that the tweets reflected users’ own
opinions and thoughts, we filtered out retweets, tweets containing
URLs, and only retained tweets written in English for consistency
in processing. The initial retrieval resulted in 26.9 million tweets
from across the world, of which only 2% were accompanied by
real-time location information.

In order to focus on tweets originating from the US, we utilized
the Carmen library [16] to determine the location of each user
based on the geo-coordinates provided in the tweets, as well as the
location field in the user’s Twitter profile. As a result, 11.1 million
tweets were successfully geolocated, of which 6.4 million were
from the US and were posted by 1.4 million unique users during
the specified time period.

3.1.1 Annotation. Based on a preliminary examination of the col-
lected data, four categories were identified to classify tweets accord-
ing to the expressed vaccination intent. The categories include: 1)
vaccinated, indicating that the user has received or will soon receive
a COVID-19 vaccine; 2) positive, conveying support or a favorable
view of the vaccine or vaccination without mentioning the user’s
own status; 3) negative, reflecting distrust and concerns about the
vaccine; 4) neutral, lacking a clear indication of the user’s inclina-
tion towards the vaccine. A sample of 1,600 tweets was randomly
selected from all US tweets and annotated for these categories.
The quadratic weighted kappa between the annotations made by
two annotators was found to be 0.795 for 100 of these tweets. The
annotation resulted in 351 tweets classified as vaccinated, 631 as
positive, 280 as negative, and 338 as neutral in terms of vaccination
intent. These labeled tweets were then used to train a classifier for
categorizing the remaining unlabeled data.

3.2 Vaccination and census data
We utilize the vaccination trend data in the United States provided
by the Centers for Disease Control and Prevention (CDC) [4] to
compare with our tweet data. This data contains daily updated
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national and jurisdictional level statistics, such as the total num-
ber of administered doses by date of administration, the percent
of the population with at least one dose, and so forth. Given that
demographic characteristics play a significant role in determining
vaccine uptake across different locations [21], we also use several
state-level census data as supplementary information for our tweet
data. These data include: 1) uninsured rate: the percent of the pop-
ulation without health insurance [3]; 2) rate 65+: the rate of the
population over 65 [1]; 3) poverty rate: the percent of the popu-
lation below poverty level [2]; and 4) non-metro score: the mean
of Rural-Urban Continuum Codes [13] of all counties in a state
divided by 10.

4 METHODS AND RESULTS
4.1 Classification
With the limited annotated data set (§3.1.1), our objective is to train a
classifier and apply it to the remaining unlabeled tweets, in order to
analyze the temporal trends in individuals’ vaccination intentions.
To this end, we compare two classification approaches: Logistic
Regression and Bidirectional Encoder Representations from Trans-
formers (BERT). For Logistic Regression, we experiment with two
input feature settings: binary (LogReg) and tf-idf (Tf-idf+LogReg)
features, both using unigrams and bigrams. In the tokenization
process, mentions, hashtags, and emojis are identified and trans-
formed into distinct tokens. Additionally, we incorporate simple
negation features to capture polarity (e.g., the phrase "not getting
vaccinated" becomes “NOT_getting, NOT_vaccinated”).

For the BERT model, we utilized a pre-trained uncased English
language model, which was fine-tuned with our annotated data to
perform the sequence classification task. The model architecture
comprised of 12 hidden layers with a size of 768 and 12 attention
heads, resulting in a total of 110 million parameters. In the tokeniza-
tion process, we included 181 additional tokens to accommodate
for the representation of emojis in the vocabulary, which originally
consisted of 30,522 tokens. The model was fine-tuned by training it
for 3 epochs with a learning rate of 5 × 10−5.

Table 1 presents a summary of the accuracy of the models, which
were evaluated using 10-fold cross-validation. The precision, recall,
and F1 scores represent the weighted average across the four classes
identified, with the exception of the 3-class LogReg model, where
the vaccinated and positive tweets were consolidated into a single
class. Additionally, we present the class-specific accuracy of the
Tf-idf+LogRegmodel towards the end. It is evident that the model
performs better for the vaccinated and positive classes as compared
to the neutral and negative classes.

Due to the limitation of the available labeled data, it was chal-
lenging to enhance the overall accuracy further. As a result, the
4-class Tf-idf+LogReg regression model was selected as the final
classifier on account of exhibiting the highest accuracy while also
being the easiest to interpret. Upon applying the classifier to the
unlabeled data, we obtained the following class distribution: 3.1
million positive tweets, 1.3 million vaccinated tweets, 1.1 million
neutral tweets, and 0.9 million negative tweets.

Table 1: Cross-validation accuracy for the classification task
regarding vaccination intent.

method precision recall f1 acc auc

LogReg(3-class) 0.62 0.64 0.63 0.64 0.75
LogReg 0.56 0.57 0.56 0.57 0.79
BERT 0.58 0.59 0.58 0.59 0.80
Tf-idf+LogReg 0.58 0.60 0.58 0.60 0.81
- negative 0.51 0.37 0.43 - 0.80
- neutral 0.51 0.29 0.37 - 0.75
- positive 0.58 0.75 0.66 - 0.77
- vaccinated 0.72 0.79 0.75 - 0.94

4.2 Temporal Analysis
Drawing on the results of the classification procedure described
in §4.1, we present the trend in tweets in relation to the national
vaccination data over time. The tweets in each class were grouped
on a daily basis with respect to Eastern Standard Time (EST) and a 7-
day rolling average was calculated to account for daily fluctuations,
i.e. the mean value of the previous 7 days as of that day.

An examination of the tweet trend (Figure 1) reveals three dis-
tinct peaks, particularly within the positive tweet class: 1) the initial
distribution and administration of COVID-19 vaccines in December
2020, 2) the confirmation of the first case of the Delta variant in the
US in May 2021, and 3) the rapid growth of both daily test cases and
positive cases starting in July 2021, following a sustained period of
declining trends. The evolution of the vaccination trend exhibited
similar changes to the trends observed in tweets at each of the
three stages. Furthermore, there appears to be a correspondence
between fluctuations in the vaccination curve, marked by a valley
in late February and a peak in April, and similar fluctuations in
the tweet curves. To quantify the relationship between the tweet
and vaccination trends, we calculated the Pearson correlation coef-
ficient (PCC) between each pair of curves. The correlation between
the volume of tweets expressing that the user has been vaccinated
has a correlation of .773 with the total number of administered
doses; .641 with the number of first dose vaccination; and -.413
with the number of new cases of COVID-19. Thus, the results indi-
cate a strong correlation between the vaccinated tweet trend and
the actual vaccination trends.

While Figure 1 depicts the absolute number of tweets in various
categories, Figure 2 aims to provide a more nuanced perspective
by presenting the proportion of tweets across categories, thereby
eliminating the influence of the overall number of tweets on the
analysis. The tweet proportion curves demonstrate a strong align-
ment with the overarching trend as well as with certain fluctuations
in the vaccination curve. Our analysis reveals a robust positive
correlation between the proportions of tweets categorized as "vac-
cinated" and the daily number of doses administered, as indicated
by a PCC of 0.843. A corresponding decrease in positive tweet pro-
portion is observed as the vaccinated tweet proportion increases,
resulting in negative correlations with the vaccination trend (PCC
−0.779). Additionally, the neutral and negative tweet proportions
also demonstrate negative correlations, as indicated by the PCC
values.
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Figure 1: A comparison of the daily tweet trend by class with the vaccination trend (red) and the trend in COVID-19 cases
(blue) at a national level. The vaccination trend encompasses both 1) daily administered doses and 2) the number of individuals
receiving their first dose of the vaccine. All of the curves in the figure are based on a 7-day moving average calculation. The
Pearson correlation coefficients between the number of vaccinated tweets and a) administered doses, b) first dose vaccinations,
and c) new cases of COVID-19 are 0.773, 0.641, and -0.413, respectively.

Figure 2: A comparison of the national tweet trend in terms of the proportions of tweets from different classes with the trend
in vaccination. The Pearson correlation coefficients between the proportions of each tweet class and the daily administered
doses are presented as follows: a) negative, -0.655; b) vaccinated, 0.843; c) neutral, -0.502; d) positive, -0.779.

4.3 Simple Regression Analysis
As an initial analysis to assess whether Twitter trends can serve
as a leading indicator of future vaccination activity in the United
States, we conducted a simple linear regression analysis. The re-
sponse variable was the vaccination rate on a specified future date,
referred to as the "target date", and the sample was drawn from
state-level jurisdictions, including all 50 states and Washington D.C.
The explanatory variables can be categorized into three groups.
For the census data (3.2), samples were generated for each variable
of interest (e.g., poverty rate) in a straightforward manner. In the

case of tweet data, a "source date" was selected prior to the target
date and all classified tweets posted on or before that date were
utilized to determine the proportion of tweets classified as a spe-
cific category (e.g., "vaccinated"). The vaccination rate at the source
date was also considered as an explanatory variable (e.g., “2021-
02-28_vr"" indicates the vaccination rate of a state as of February
28th, 2021). Ordinary least-squares models were applied to each
explanatory variable based on samples collected from all states. The
results of the two date pair settings are depicted in Figure 3, with
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Figure 3: Estimated coefficients of simple linear regressions for the vaccination rate at the target date. The figure displays the
results of two regression models: 1) source date: February 28, target date: May 1 (left subfigure); 2) source date: April 30, target
date: July 1 (right subfigure). The explanatory variables include: a) census features, b) tweet proportions as of the source date,
and c) vaccination rate at the source date.

Figure 4: Relationship between the vaccination rates among states as of May 1st, 2021 and the percentage of positive(PCC
0.411)/negative(PCC -0.273) tweets on Twitter as of the end of February, 2021.

the estimated coefficients and 95% confidence intervals presented
for comparison.

In both the analyzed settings, we found that the proportion of
positive tweets on the source date had the strongest correlation
with the future vaccination rate on the target date among different
states. Conversely, the proportion of negative tweets demonstrated
a contrary influencewith a larger variance. This trend can be further
observed through the plotting of the vaccination rates of all states
on the target date against each of the tweet proportions Figure 4).
Additionally, we found that the proportion of neutral tweets was
positively correlated with higher vaccination rates among states
with large deviation, while the proportion of vaccinated tweets
appeared to be a negative indicator in predicting the vaccination
rates.

4.4 Forecasting
To more rigorously assess the utility of the Twitter data for building
real-time estimates of future vaccination activity, we next present
a vaccine administration forecasting model based on a single-step
time series forecasting approach. Our model utilizes aggregated in-
formation within a designated time window to predict the number
of vaccine doses administered in a given region within a specified
time range in the near future (as depicted in Figure 6). The time
window is comprised of multiple consecutive time steps of uni-
form length (e.g., one week). In a given time step 𝑡𝑖 , the known
information, such as tweet trend and census data, is combined to
form a feature vector x𝑖 , while the number of administered doses,
normalized by the population of the corresponding region, is rep-
resented as 𝑦𝑖 . We aim to fit a model F𝑠,𝑔,𝑤 that approximates the
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Figure 5: Forecasting on normalized doses using ARLSTM model (𝑠 = 6, 𝑔 = 0,𝑤 = 2).

Figure 6: A time-series sample in the vaccine administration
forecasting model.

relationship between the normalized number of administered doses
in a future time range 𝑡 , denoted by y, and the aggregated infor-
mation in a specified time window, represented by a set of feature
pairs (x𝑖 , 𝑦𝑖 ) for each time step. The width of the time window,
represented by 𝑠 , is the number of time steps it encompasses. The
forecasting gap, represented by 𝑔, is the number of time steps be-
tween the final time step 𝑡𝑠 and the target time 𝑡 . The width of the
target time range 𝑡 is denoted by𝑤 and is expressed in number of
time steps. To generate training data, we consider input instances
of the model z𝑗 = {(x𝑖 , 𝑦𝑖 )}𝑠+1− 𝑗

𝑖=𝑗
and their corresponding output

values y𝑗 . We can generate 𝑛 such pairs {(z𝑗 , y𝑗 )}𝑛𝑗=1 for a region
by incrementally shifting the time window forward one step at a
time, starting with an initial example.

4.4.1 Input features. As previously mentioned, at each time step
𝑡𝑖 , the input consists of two components, x𝑖 and 𝑦𝑖 , where 𝑦𝑖 repre-
sents the quantity of doses administered. To assess the efficacy of
tweet-related features, three distinct configurations of x𝑖 have been
formulated. In the first configuration, referred to as the baseline
setting (baseline pred), only𝑦𝑖 is utilized as the input for each time
step, and x𝑖 is excluded. In the second configuration (census pred),
census data is incorporated into the input, such that x𝑖 encompasses

several census features of the region in question. It should be noted
that the census features remain constant across different time steps.

In the third configuration, referred to as the complete setting
(full pred), the tweet features are added to x𝑖 . These features are
obtained through a procedure that is similar to the one described
in §4.3. For a specific region and time step, the cumulative num-
ber of tweets in each class is tallied from an initial date to the
end date of that time step. Subsequently, the proportions of tweets
among all four classes are calculated and employed as feature val-
ues. This means that the resulting features not only depict the
situation within the given time step, but also encompass historical
information pertaining to the region in question.

4.4.2 Experiments and results. We implement a time-rolling ap-
proach for the model’s training and testing, which commences on
December 19, 2020 with a time step length of one week. Given the
consideration of 51 state-level jurisdictions, a training example can
be generated for each time window from each jurisdiction. As the
time window advances by one step, an additional 51 examples are
added to the training data set, and the model is refitted using the
augmented training data. The testing is carried out concurrently by
utilizing the trained model on examples from the subsequent time
window and calculating the errors between the obtained results
and the actual values.

In recognition of the varying scales of the input features, stan-
dardization is performed prior to training and testing by normaliz-
ing the features using the standard score. To be more specific, the
mean and standard deviation of each feature are calculated based
on all time steps included in the current training data, taking into
account that each time step is only counted once, even if it appears
in multiple successive time windows.

In our efforts to evaluate the efficacy of forecasting, we test a
range of models, including linear regression (LinearReg), Ridge
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Figure 7: Performance of ARLSTM for various forecasting settings (𝑠 = 6), where 𝑠 is the width of the time window in weeks, 𝑔 is
the forecasting gap in weeks, and𝑤 is the width of the target time range in weeks.

Figure 8: Performance of different forecasting models mea-
sured by MAEs with 95% bootstrap confidence interval across
all states and queried time ranges (𝑠 = 6,𝑤 = 2, 𝑔 = 0).

regression (RidgeReg), deep neural network (DNN), convolutional
neural network (ConvNN), Long short-term memory (LSTM), and
auto-regressive LSTM (ARLSTM). For the initial three models, each
input example (z𝑗 ) is first transformed into a feature vector before
being fit to the model. The DNN model consists of two hidden
layers, each containing 64 units. In the ConvNN model, the inputs
are first passed through a convolutional layer with 32 filters, where
each kernel has a size of 3, before being flattened and fed into a
hidden layer of 32 units. The LSTM model comprises an LSTM
layer of 32 units and a 32-unit hidden layer. In the ARLSTM model,
(𝑔 +𝑤) LSTM steps are executed to produce the final prediction,
whereas only one step is performed in the LSTM model. The mean
squared error is employed as the loss function for the four neural
network models, which are trained for 40 epochs using the Adam
optimizer with a learning rate of 0.005.

The performance of the models is evaluated using mean absolute
errors (MAEs) under different forecasting and feature settings. In
order to reduce the impact of randomness in the results, the training
and testing processes for the neural network models are repeated
three times and the average predictions are used. Figure 5 illustrates
the testing results of the ARLSTM model for the case when 𝑠 = 6,
𝑔 = 0, and 𝑤 = 2. The upper plot shows the mean true/predicted
normalized administered doses for all states in the queried time

range, with the error bars indicating the standard deviation among
the states. The lower plot reports the prediction errors over time
for different input settings. The results indicate that the full pred
setting generally yields the best predictions, especially when the
actual vaccination trend is decreasing. The baseline estimates are
calculated as ŷ𝑗,baseline = F baseline

𝑠,𝑔,𝑤 (z𝑗 ) = 𝑤 · x𝑠+1− 𝑗 , where the
normalized doses of the last time step in the input time window
are simply multiplied by the width of the queried time range.

Figure 8 shows the comparison of different models under various
feature settings using the same forecasting parameter setting. The
empirical bootstrap is applied to calculate 500 MAEs and the 95%
confidence interval is determined for each group of predictions
under the same model and input settings. The results indicate that
only the LSTM and the ARLSTM models outperform the baseline
estimate for all feature settings. The input setting with tweet fea-
tures (full pred) significantly improves the performance of LSTM
and ARLSTM, demonstrating the benefits of incorporating tweet
information in the forecasting procedure.

Figure 7 shows the evaluation results of ARLSTM under differ-
ent forecasting parameter settings with 95% bootstrap confidence
intervals. The results suggest that the MAE increases as the fore-
casting time span (𝑤 ) expands and the error of full pred rises the
slowest. However, when the forecasting gap (𝑔) is fixed to 0 and
the forecasting time span is one week, the forecasting model does
not outperform the baseline estimates, indicating that it is difficult
to make accurate predictions within a short time range when the
normalized doses of different states differ greatly. As the forecasting
time span increases, the variance across different states decreases,
enabling the forecasting model to effectively predict the future
values. Additionally, the results also demonstrate that the tweet-
related features (full pred) consistently improve the accuracy of
the forecasts under most settings.

4.5 Clustering
To gain insights into the key factors affecting people’s intent to-
wards COVID vaccines, we conducted a clustering analysis of the
classified tweets. The clustering was performed using a 𝐾-means
algorithm, where each tweet was represented as a vector of term
frequencies and normalized using the L2 norm. For this analysis, we
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sampled 50,000 tweets from both the positive and negative classes
from the classified tweets.

The tokenization process was similar to that used in the clas-
sification task and involved removing stop words and frequently
occurring terms. The resulting clusters were characterized by their
size and center vector, and the top terms were identified by sorting
the coefficients of the center vector. To determine the best number
of clusters for the 𝐾-means algorithm, several settings were tested,
with the aim of obtaining meaningful top terms for the majority
of clusters and as many clusters as possible. The smallest cluster
was also required to have a sufficient number of tweets. With these
considerations, the number of clusters was set to 32 for both classes.

The results of the clustering analysis are presented in Table 2 in
the Appendix, which lists the clusters in descending order of size
and shows the top 4 terms for each cluster. For both the positive and
negative classes, the largest cluster was omitted as it was sparse
due to its extremely large size.

The examination of positive tweets sheds light on several preva-
lent themes that are frequently mentioned by individuals who ex-
press their support for or hold positive views towards vaccination.
These themes are a reflection of the general sentiment of individu-
als who support vaccination, and highlight the key reasons behind
their positive outlook. Some of the most common expressions in-
clude “ending the pandemic”, which underscores the importance of
vaccination in bringing an end to the ongoing COVID-19 pandemic.
“Countering anti-vaxxers” is another common expression that high-
lights the need for individuals to stand up against misinformation
and negative propaganda surrounding vaccination. “Life-saving” is
a testament to the crucial role that vaccination plays in saving lives,
while “feeling better” reflects the improved health and well-being
that individuals experience after being vaccinated.

On the other hand, the analysis of negative tweets provides
insights into the key concerns that individuals have regarding vac-
cination. These concerns are reflected in the presence of terms such
as “experimental”, which highlights the uncertainty surrounding
the long-term effects of the COVID vaccines. “Passport” is another
term that is frequently mentioned, and reflects the worries that
individuals have regarding the potential use of vaccination as a
form of coercion or discrimination. “Long-term effects”, “FDA ap-
proved”, and “blood clots” are expressions that reflect the general
unease that individuals have regarding the safety and efficacy of
the vaccines.

It is worth noting that certain terms, such as “mask”, “death”,
“school”, and “immunity”, are present in both positive and negative
tweets. However, the contexts in which these terms are used differ,
with terms such as “herd immunity” appearing in positive tweets,
while “natural immunity” is found in negative tweets. This high-
lights the importance of considering the wider context in which
these terms are used, and underscores the need for a nuanced and
sophisticated analysis of the data.

5 CONCLUSION
In this paper, we present an approach for text classification to
identify tweets related to COVID-19 vaccination status or intent.
The results of our subsequent temporal and regression analysis
reveal strong correlations between tweet proportions of different

classes and the actual vaccination trend. Furthermore, our forecast-
ing model shows that tweet-related features significantly enhance
the accuracy of state-level vaccination forecasts, suggesting that
tweet trends may serve as a useful precursor of the actual vacci-
nation status. Finally, our clustering analysis uncovers recurring
themes and key concerns among individuals regarding vaccination.

It is important to acknowledge the limitations of our study, as
is common with many studies based on social media data. First,
it is necessary to recognize that Twitter users may not be a rep-
resentative sample of the general population, which can limit the
generalizability of our findings, particularly for specific states due
to the large variation in the number of tweets among them. In
addition, our study’s analysis is restricted to the English language,
potentially excluding data from non-English speaking populations.
Furthermore, our text classification approach relied on a classifier
trained on data sampled through select keywords, and not validated
on all Twitter messages. Additionally, the classifier’s accuracy is
imperfect, which may influence the subsequent analysis and inter-
pretation of the data. Finally, it is crucial to consider the limitations
of self-reporting and the potential for disparities between attitudes
expressed on social media and those held in real life.

In future work, a promising direction is to broaden the scope of
data sources beyond Twitter to include other social media platforms.
This could provide a more comprehensive understanding of public
attitudes related to vaccination and address the potential biases of
a single platform. Additionally, incorporating region-specific data,
such as public health policies, may provide a more nuanced under-
standing of vaccination behaviors and allow for the identification of
reasons for variations in vaccination rates between different states.
Moreover, exploring domain adaptation techniques may improve
the accuracy of vaccination status classification considering the
evolving vaccination practices and policies. Overall, these future
directions may enhance our comprehension of public attitudes and
behaviors towards vaccination and lead to more effective vaccina-
tion campaigns.
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APPENDIX
Table 2 below shows the results of the clustering analysis on positive
and negative tweets.
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