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Abstract Learning from Label Proportions (LLP) is a

machine learning problem where the training data are

composed of bags of instances, and only the class label

proportions for each bag are given. In some domains we

can directly obtain label distributions; for example, one

can use census statistics and social media user informa-

tion grouped by location to build a classifier for user

demographics. However, label proportions are unavail-

able in many domains, such as product review sites. The

solution is to modify the model fit on data from where

label proportion are available domains (the source do-

main) to apply to a domain where the label distribu-

tions are not available (target domain). Such problems

can be regarded as the unsupervised domain adaptation

problems in an LLP setting. The goal of this paper is

to introduce domain adaptation methods to the original
LLP solutions such that the proposed model can clas-

sify instances from a new domain. We propose a model

combining domain-adversarial neural network (DANN)

and label regularization, which can be fit on the source-

domain bags and predict labels for target-domain in-

stances. This approach requires only label proportions

in the source domain. Our experiments on both syn-

thetic tasks and sentiment classification tasks indicate

a noticeable improvement in accuracy as compared to

using LLP without domain adaptation.
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1 Introduction

The Learning from Label Proportions (LLP) is a ma-

chine learning task that aims to mitigate the challenges

posed by limited labeled data by leveraging label pro-

portions of sample groups, as opposed to individual

sample labels. In typical supervised learning scenar-

ios, the training data is composed of individual sam-

ples with known labels. However, in the context of LLP,

training data is presented in the form of bags of sam-

ples, where each bag is associated with a label dis-

tribution that reflects the proportion of samples with

distinct labels (e.g., positive or negative) in the bag.

To achieve LLP, specific methodologies have been de-

veloped that utilize the label proportion information

effectively. These methods typically involve statistical

techniques or neural networks that model the relation-

ship between bag-level label distributions and individ-

ual sample labels. By leveraging this relationship, LLP

enables the estimation and prediction of individual sam-

ple labels, thereby aligning with the objective pursued

in conventional classification tasks.

LLP is particularly useful in situations where ob-

taining individual sample labels is difficult or expensive,

but label proportions for sample groups can be obtained

with relative ease. Examples of such situations include

medical databases [8] and census data [21], wherein the

specific information pertaining to individuals is pre-

sented in an aggregated format owing to privacy con-

cerns. Additionally, the LLP approach has been applied

in various other fields, including fraud detection [23],

social media [1], computer vision [9,17], among others.

However, in certain domains even label proportions

are not available, such as in product review and social

media sites. Therefore, this paper aims to introduce do-

main adaptation methods to the original LLP solutions
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to classify instances from new domains. This adapta-

tion involves utilizing available data from related do-

mains that do have label proportions, which reduces

the dependence on labeled training data for learning.

To achieve this, the domain-adversarial neural net-

work (DANN) [11], a multiple output network that pre-

dicts both class and domain labels, is applied to the

LLP setting. The network is fit on both source and tar-

get domain data, where the labels for target domain

data are not revealed. In our LLP setting, the network

predicts label proportions of sample bags instead of in-

dividual labels for both class and domain.

To evaluate our method, we conduct experiments

using both synthetic data as well as sentiment classifi-

cation data. An essential consideration in our approach

is the utilization of the data in the target domain, where

neither labels nor label proportions are available. We

make the assumption that samples in the target do-

main are divided into bags, and each bag is expected to

be strongly indicative of a particular class, with its rel-

ative proportion dominantly greater than that of other

classes in the same bag.

Through our experiments on a synthetic classifica-

tion task and two text classification tasks, we observe a

noticeable improvement in accuracy compared to LLP

without domain adaptation. Importantly, this approach

also distinguishes itself from existing domain adapta-

tion algorithms, as it solely requires label proportions

in source domains.

2 Related Work

LLP has been broadly applied to address real-life prob-

lems, and various methods have been proposed to adapt

to specific settings. For example, the expectation max-

imization (EM) based on probabilistic models is used

to predict the voting behavior of different demographic

groups in the US Presidential Election [25]. Several

LLP models have been developed, such as those based

on probability estimation, including MeanMap [22] and

Laplacian MeanMap [21], as well as Support Vector Ma-

chine (SVM) approaches, such as Inverse Calibration

[23]. MeanMap, for instance, employs empirical means

on bags to approximate expectations with respect to the

bag distribution and has been shown to converge at the

same rates as methods with full access to all label in-

formation [22]. Similarly to LLP, label regularization is

applied under a semi-supervised learning setting, where

marginal label distributions of unlabeled data are pro-

vided [19]. This method can lead to significant perfor-

mance gains when labeled data are scarce. Meanwhile,

the Empirical Proportion Risk Minimization (EPRM),

a general LLP framework, has been introduced to ana-

lyze the possibility and limitation of LLP [28], providing

guidance on how to organize and utilize data, such as

the fact that EPRM will fail to recover instance labels

if all bags are at least pure.

Efforts have been made to introduce domain adap-

tation to LLP by utilizing an LLP model fitted on the

source domain to generate label proportions for the tar-

get domain, followed by refitting a new LLP model

on the target domain using self-training [2]. More re-

cently, LLP methods have been combined with neu-

ral networks for more general and extensive use. For

example, Co-Training LLP introduces a regularization

layer called Batch Averager appended to a normal deep

learning network to adapt to LLP settings [3]. LLP-

GAN is designed to apply Generative Adversarial Net-

works (GAN) to incomplete label situations in which

the generator learns the data distribution through the

adversarial scheme, and the discriminator distinguishes

instances from multiple true classes and the generator

[18]. The LLP-LS framework builds a LLP solver based

on convolutional neural networks (ConvNets) and in-

troduces the supervised loss derived from extra labeled

samples [24]. Among the aforementioned works, only a

few attempted to introduce domain adaptation to LLP,

and the methods of domain adaptation attempted were

limited.

Domain adaptation (DA) is a type of learning prob-

lem in which training and test data are drawn from

distributions that are similar, but not identical. Specifi-

cally, in this setting, the labeled training data originates

from a source domain, and the goal is to train a classifier

that performs well on a target domain with a slightly
different distribution. Prior research has demonstrated

that the target error of a classifier can be bounded

by the source error and the divergence between the

two domains [5]. Therefore, the key challenge in cross-

domain prediction is to learn features that are both

discriminative and domain-invariant. Various unsuper-

vised methods have been proposed to address this issue.

Some techniques reweight or select instances from the

source domain, including Maximum Mean Discrepancy

[7], Kernel Mean Matching [16], and Landmark Selec-

tion [12]). Other methods aim to match the feature dis-

tributions of the source and target domains via specific

transformations in feature space, such as Transfer Com-

ponent Analysis [20], Intermediate Subspace [14], Do-

main Invariant Projection [4], and Subspace Alignment

[10]). All of these approaches seek a subspace that aligns

the source distribution with the target one. With the

advent of Generative Adversarial Networks (GAN) [13],

the search for such subspaces has been performed in an

adversarial way. Domain-Adversarial Neural Network
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(DANN) leverages the neural network’s hidden layer to

learn a representation that is predictive of the source

labels, but unable to identify the domain of the input

[11]. The Conditional Generative Adversarial Network

(CGAN) adds a conditional generator to the learning

model and applies it to structured domain adaptation,

which involves structured prediction with an exponen-

tially large label space [15]. In contrast, the Adversar-

ial Discriminative Domain Adaptation (ADDA) aims

to isolate the adversarial domain discrimination pro-

cess from the label prediction process by learning sep-

arate feature representations for the source and target

domains [26].

In the context of this related work, the primary con-

tribution of this paper is to apply adversarial training

to LLP models for unsupervised domain adaptation.

Specifically, we address the setting where label propor-

tions are provided only for bags of source domain data,

while the target domain data includes only unlabeled

bags. We demonstrate that, with sufficient training ex-

amples, adversarial training facilitates the LLP models

trained on the source domain to achieve high accuracy

on the target domain.

3 Model

We consider the binary classification problem where X

is the input space and Y = {0, 1} is the set of possi-

ble labels. The data are presented as bags of instances.

Each bag consists of r instances x̃ = (x1, ..., xr) and

their corresponding labels ỹ = (y1, ..., yr) where r de-

notes the bag size. Here we assume all bags are of the

same size for simplicity. Moreover, we have the source

domain DS and the target domain DT which are two

different distributions over X × Y . A bag of source do-

main consists of instances with labels drawn i.i.d. from

DS and a bag of target domain bag consists of instances

without labels drawn i.i.d. from DX
T , where DX

T is the

marginal distribution of DT over X:

x̃s = (x1, ..., xr)
T , ỹS = (y1, ..., yr)

T ,

∀j ∈ {1, ..., r}, (xj , yj) ∼ DS ;

x̃t = (x1, ..., xr)
T ,∀j ∈ {1, ..., r}, xj ∼ DX

T .

In our settings, besides the bags of instance attributes

for both source and target domain the learner only

has access to the proportion of positive labels in each

bag of source domain, i.e. S = {(x̃i, p(ỹi))}ni=1 and

T = {x̃i}n+n′

i=n+1, where n is the number of bags from

source domain, n′ is the number of bags from target

domain and p : Y r → R is the function to calculate

positive label proportions:

p(ỹ) =
1

r

r∑
j=1

yj . (1)

Our goal is to build a classifier η : X → Y which can

predict well on instances from target domain, i.e.

η = argmin
η

∑
(x,y)∈DT

L(y, η(x)), (2)

where L is the loss function to calculate the prediction

error. As an unsupervised domain adaptation learning

problem, we have no access to the labels from DT .

When the bag size equals 1, i.e. r = 1, the problem

regresses to an instance-level domain adaptation prob-

lem.

3.1 LLP Models without DA

First, we have some pure LLP models serving as our

baselines. When applying these models to our problem,

we can simply assume that source domain DS and tar-

get domain DT are the same distribution. Therefore, we

only use data from S for the purpose of training these

models.

3.1.1 Ridge Regression

This approach is base on linear regression with L2 reg-

ularization. We convert each bag into a single instance

where each attribute value is the average over all in-

stances in that bag:

mean(x̃) = (
1

r

r∑
j=1

xj,1, ...,
1

r

r∑
j=1

xj,d)
T , (3)

where xj,k is the kth attribute value of the jth instance,

d is the number of attributes representing each instance.

We use these averaging instances as the input of the

model and the corresponding label proportions as tar-

get. Let zi = mean(x̃i) ∈ Rd be the vector of mean

attribute values over all instance vectors in the bag x̃i,

p̃i = p(ỹi) be the proportion, θ be the model parame-

ters, we can train the model by minimizing the following

error objective:

J(θ) =
1

n

n∑
i=1

(p̃i − zTi θ)
2 +

1

2σ2
||θ||2, (4)

where σ is the parameter for the L2 regularization. A

new instance x will be classified positive if xT θ is greater

than .5 and negative otherwise.
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3.1.2 Neural Network

In this method, we use neural network (NN) to intro-

duce non-linearity to the model. We consider a standard

neural network with a single hidden layer. It takes d-

dimensional real vectors as inputs i.e. X = Rd. The

hidden layer Gf (·; θf ) learns a function Gf : X → RD

which projects an original instance to theD-dimensional

feature space. The projection process is a linear trans-

formation followed by a nonlinear activation, e.g. Gf (x;

W,b) = sigmoid(Wx+b), where (W,b) ∈ RD×d×RD

denotes the learnable parameters of the hidden layer.

The prediction layer Gy(·; θy) learns a function Gy :

RD → [0, 1], which maps the direct output of the hidden

layer to a real value between 0 and 1. The output of the

prediction layer, Gy(Gf (x)), represents the probability

of instance x being the positive class. Thus x will be

classified as a positive instance if the output is greater

than .5 and as a negative instance otherwise.

Let θ be the model parameters involved in the neural

network and L(·, ·) be the loss function, we can learn

the model by minimizing the error objective:

J(θf , θy) =
1

n

n∑
i=1

L(p̃i, Gy(Gf (zi; θf ); θy))

+
1

2σ2
f

||θf ||2 +
1

2σ2
y

||θy||2, (5)

which is similar to the objective described in ridge re-

gression. Since the inputs here are the average feature

vectors of each bag from source domain, the output of

the neural network Gy(Gf (zi)) for an input averaging

vector zi corresponds to a predicted proportion of pos-

itive examples in that bag.

3.1.3 Label Regularization

The Label Regularization (LR) method is a classifica-

tion algorithm based on multinomial logistic regression

[19]. It uses KL-divergence as the loss function in the

objective and takes bags of instances as input instead

of the average feature vectors. For each bag, we define

the posterior distribution of bag labels as

p̂i(y) =
1

r

∑
x∈x̃i

pθ(y|x). (6)

We introduce the previous neural network to this model,

thus for a binary classification problem we can further

define the posterior probability of positive bag labels

as p̂i = p̂i(1) =
1
r

∑
x∈x̃i

Gy(Gf (x; θf ); θy). Let θ be the

model parameters, LD be the KL-divergence distance,

the model can be trained by minimizing the following

cost function:

J(θ) =
1

n

n∑
i=1

LD(p̃i, p̂i) +
1

2δ2
||θ||2. (7)

In this approach, an instance can be classified ac-

cording to the direct output of the prediction layer Gy,

which indicates the probability that it is from the pos-

itive class. The input for this model has three dimen-

sions: bag, instance, and feature. We need an averaging

layer connected to the prediction layer to compute the

mean result p̂i(1) for each bag x̃i. Thus, we can get the

loss based on the output of the averaging layer accord-

ing to the objective.

3.2 DANN for LLP

The Domain-Adversarial Neural Network (DANN) [11]

is a multi-output neural network that aims to learn a

model which is able to narrow the domain divergence

between predictions on two different sample distribu-

tions. It is an unsupervised learning method that uses

labeled data from source domain to train the target

model and unlabeled data from target domain to help

improve the prediction on it. We can build the network

by expanding the previous neural network model.

To narrow the difference between two domains, we

need to add a regularizer which is implemented by adding

a domain prediction layer Gd(·; θd) to the network fol-

lowing the feature representation layer Gf (·; θf ). Gd

learns a function: RD → [0, 1], which maps the direct

output of Gf to a real value between 0 and 1. The out-

put of the layer Gd(Gf (x; θf ); θd) for an input instance
x indicates probability that it is from the source do-

main.

3.2.1 DANN with Average Features

Similar to what we do in the NN model, we use the av-

erage feature vector of each bag as the input of the net-

work. Let θf , θy, θd be the model parameters involved

in the three corresponding layers of DANN and Ly(·, ·),
Ld(·, ·) be the loss functions for the label classifier and

the domain predictor, the error objective can be written

as:

J(θf , θy, θd) =
1

n

n∑
i=1

Ly(p̃i, Gy(Gf (zi; θf ); θy))

− λ(
1

n

n∑
i=1

Ld(qi, Gd(Gf (zi; θf ); θd))

+
1

n′

N∑
i=n+1

Ld(qi, Gd(Gf (zi; θf ); θd))), (8)
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Fig. 1 The structure of the DANN-LR model.

where qi denotes the domain label for bag x̃i (1 for

source domain, 0 for target domain) and λ is the pa-

rameter to weight the domain loss.

The domain-adversarial training process is to iter-

atively optimize the objective J . In each iteration, we

first minimize J with θd fixed and then maximize J with

θf , θy fixed. By using this model, we intend to learn a

function Gf that can help classify instances into differ-

ent classes and tends to misclassify between domains.

Thus, the learned label classifier should be able to pre-

dict well on instances from both source and target do-

mains. In the practical implementation of DANN, the

domain-adversarial training is implemented by adding

a gradient reversal layer between the feature extraction

layer Gf and the domain prediction layer Gd in order

to minimize the objective while maximizing a part of

it.

3.2.2 DANN with LR

This is the combination of DANN and LR. We can ac-

cordingly define the posterior probability of bag x̃i be-

ing a source domain bag as q̂i =
1
r

∑
x∈x̃i

Gd(Gf (x; θf );

θd). Therefore, the objective of DANN with LR can be

rewritten as

J(θf , θy, θd) =
1

n

n∑
i=1

Ly(p̃i, p̂i)

− λ(
1

n

n∑
i=1

Ld(qi, q̂i) +
1

n′

N∑
i=n+1

Ld(qi, q̂i)). (9)

The training process is the same as described before.

For each batch of data in training, we use bags from

source domain to train the label classifier Gy and use

bags from both source and target domain to train the

domain predictor Gd. Like the network for label regu-

larization, we also need an averaging layer directly fol-

lowing the domain prediction layer to calculate each q̂i.

Figure 1 shows the architecture of the DANN-LR

model. Red and the color tomato represent the positive

instances, while green and light green indicate the neg-

ative ones (Note that we do not know the actual labels

of instances in any bags). The feature extractor takes

bags from both source and target domains and produces

bags of extracted feature vectors. The label predictor

takes the bag of vectors from source domain and tries

to predict the label for each individual instance. The

downstream batch averager then calculates the rate of

positive instances in that bag based on the predictions.
The domain classifier takes the output bags from the

feature extractor and distinguishes between instances

of source and target domains. The connected batch av-

erager counts the predictions in each bag and gives the

probability of the bag being a source-domain bag. Note

that the gradient reversal layer directly delivers the out-

put of the feature extractor to the domain classifier in

the forward pass, while in the back-propagation step it

transmits the opposite of the corresponding gradients

(with possible scaling) back to the feature extractor to

make it confuse source-domain instances with target-

domain ones.

3.3 LLP Models with Subspace Alignment

We additionally implement Subspace Alignment (SA)

to serve as an additional baseline method of domain

adaptation. In this method, the goal is basically to align

the instances from both source and target domain to
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Fig. 2 Visualization of synthetic data with different shift settings using PCA dimension reduction. Shifts among features: (a)
uniform distribution in range [-0.4, 0.4]; (b) uniform distribution in range [-0.25, 0.25]; (c) normal distribution of µ = 0 and
σ = 0.32 in range [-0.4, 0.4]; (d) normal distribution of µ = 0 and σ = 0.2 in range [-0.25, 0.25].

the same subspace by linear transformation based on

the Principal Component Analysis (PCA).

We represent the samples from the two domains by

matrix MS ∈ Rnr×d and MT ∈ Rn′r×d, where each

row is an instance and each column corresponds to

a feature. Then we perform PCA on both matrices

to separately produce k principal components XS =

PCAk(MS), XT = PCAk(MT ) ∈ Rk×d, where we as-

sume that k ≤ d ≤ min{nr, n′r}. We define two func-

tions to project instances from both domains to the

same subspace:

saS(x) = XSX
T
S XTx, saT (x) = XTx. (10)

The projected instance vectors can further be used in

the learning process.

3.3.1 Ridge with SA

This method is straightforward as we have already got

the projection functions to perform the transformation.

We apply functions (10) to the average feature vectors

obtained from S and T and provide the result vectors in

the subspace as the input for the previous Ridge model.

Therefore, we can define the objective by slightly chang-

ing Equation (4):

J(θ) =
1

n

n∑
i=1

(p̃i − saS̄(zi)
T θ)2 +

1

2σ2
||θ||2. (11)

An instance x from target domain will be classified pos-

itive by this model if saT (x)
T θ is greater than .5 and

negative otherwise.

3.3.2 LR with SA

Similarly we can apply SA to the Label Regularization

method. We define the posterior probability of positive

bag labels of bag x̃i as:

p̂′i =
1

r

∑
x∈x̃i

Gy(G
′
f (saS(x))), (12)

where G′
f : Rk → RD is a function projecting the vec-

tor from the k-dimensional representation to the D-

dimension feature space. Accordingly, the objective is:

J(θ) =
1

n

n∑
i=1

LD(p̃i, p̂
′
i) +

1

2δ2
||θ||2. (13)

4 Data

We use both synthetic data and real-world data of in-

stance level to form data bags to be used in the LLP

tasks. Since we choose to use sentiment classification

problem to test models, the real-world data are text

reviews of products or businesses.

4.1 Synthetic Data

We first generate 20,000 samples of 64 features for a

binary classification problem. All features are informa-

tive and their importance coefficients are drawn from a

normal distribution of mean 0 and standard deviation

0.1. We randomly generate an instance with each fea-

ture value drawn from a uniform distribution between

0 and 1, and assign the label according to the dot prod-

uct of its feature vector and our predetermined feature

importance vector with some noise added. If the prod-

uct is closer to 0, the instance will be rejected with a

higher probability to make the classification problem

less difficult. We repeat the above process until we get

10,000 instances from each of the classes.

Then we divided the samples into two groups of

the same size, each of which consists of equal numbers

of samples from both positive and negative class. One

group is regarded as the dataset of the source domain

and the other will be further processed to serve as the

target-domain data. We generate the data for the tar-

get domain by shifting the feature values of the original

6            
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Table 1 The number of features in common across different domains in Multi-Domain Sentiment Dataset.

books DVDs electronics kitchen
books 11324 6653 3820 3411
DVDs - 10793 3811 3395

electronics - - 7373 3869
kitchen - - - 6422

instances. To test the performance of models in differ-

ent scenarios, we use different settings of the shift val-

ues of the features to construct different target-domain

data. The shift values are randomly drawn from either

the normal or the uniform distribution of different scale

ranges. To compare the effect of different shift settings,

we apply PCA dimension reduction to each dataset in-

dividually to project the samples onto a 2D subspace.

As shown in Figure 2, a wider range of shift results in

a larger shift distance, indicating that classification of

the target domain data using the classifier trained on

the source domain data may be more challenging.

Using the generated instance-level data, we can sep-

arately construct data bags for both source and target

domain through a sampling process. Within these bags,

the proportions of positive instances can vary, encom-

passing values including 0.1, 0.2, 0.3, 0.7, 0.8, and 0.9,

each assigned an equal probability. To investigate the

impact of bag size, two different settings are examined:

10 and 50. Consequently, the shape of an input bag as-

sumes either (10, 64) or (50, 64), denoting the number

of instances and the respective feature dimensionality.

4.2 Yelp Reviews

We first use the Yelp Dataset (version 9) for our text

classification tasks [27]. We treat the reviews of busi-

nesses containing the word “food” and “restaurants”

in their categories as data of one domain and all other

reviews as data of the other domain. Reviews of stars

more than 3 are labeled as positive reviews and those

of stars less than 3 are negative reviews. We have two

different settings of generating bags based on the bag

size. In the first setting, we sample 80,000 reviews with

labels balanced in each domain. Unigrams and bigrams

are used to represent reviews and tokens of frequency

less than 50 are omitted. Due to our domain adapta-

tion settings, we only use the intersection of the terms

(features) from two domains as the vocabulary. After

removing terms not in common we perform TF-IDF

transformation on all the data to get final instances.

Eventually we get 17,411 features. As for generating

data bags, we use the same approach as mentioned and

separately test with the bag size set to 50. In the other

setting, we finally have 32,000 instances in each domain

and they are put into bags of size 20. Therefore in both

settings, we have 1600 bags in each domain.

4.3 Amazon Reviews

We use the Multi-Domain Sentiment Dataset (version

2.0) [6] as another real-world dataset which contains

product reviews taken from Amazon.com of four types:

books, DVDs, electronics and kitchen. In each domain,

there are 2000 pre-processed and labeled reviews in

which positive and negative reviews are balanced and

each review is represented in unigram and bigram fea-

tures. In the experiments, we choose one type of the

product reviews as source domain and another as tar-

get domain. Moreover, we perform the same procedure

as that for Yelp reviews, which is removing terms not

in common and the TF-IDF transformation on all data.

Table 1 shows the number of features and intersections

for different domains.

To generate data bags, we use the same propor-

tion settings as that used for synthetic data. Since the

amount of data is limited, the bag size is set to 10 to

sample 200 bags for each domain.

5 Experiments and Results

For comparison, we performed experiments on both in-

stance level data and bag-level data. For instance-level

experiments, the scenario is equivalent to that for bag-

level when each bag consists of only one instance. We

compared four instance-level methods including Logis-

tic Regression (log-reg), 2-hidden-layer deep neural net-

work (i-dnn), SA (i-sa) and DANN (i-dann). The

structure of DANN is directly extended from the deep

neural network (i-nn), which acts as the feature extrac-

tion and label prediction parts of the DANN. The first

two methods do not deliver any domain adaptation.

As for the bag level, we evaluate all seven mod-

els described in the previous sections: Ridge regression

(ridge), deep neural network (dnn), Label Regulariza-

tion (lr), Ridge with Subspace Alignment (sa), LR with

SA (lr-sa), DANN using average features (dann), and

DANN with LR (dann-lr), where the first three are

methods without domain adaptation. For the methods

involving neural networks, we use binary cross-entropy
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Table 2 Summary of model parameters for dann-lr with r representing the number of samples in each bag, d denoting the
number of features of each sample. This configuration is utilized in the experiments on Yelp reviews and Amazon reviews.

layer output shape & hyper parameters
input layer input shape (r, d)
dropout dropout rate 0.2

feature extractor fully-connected, output shape (r, 64), activation ReLU
label predictor domain classifier

gradient reversal layer no yes
hidden layer output shape (r, 128), activation ReLU output shape (r, 256), activation ReLU
output layer output shape (r, 1), activation Sigmoid output shape (r, 1), activation Sigmoid

batch averager output shape (1,) output shape (1,)

Table 3 F1 scores of models on different settings of synthetic data.

U(−0.4, 0.4) U(−0.25, 0.25) N (0, 0.322) N (0, 0.22)
log-reg 72.88 83.68 68.78 81.52
i-dnn 72.42 83.39 68.21 81.13
i-sa 72.93 83.71 73.39 83.22
i-dann 83.07 87.97 81.02 85.41

bag size 50 10 50 10 50 10 50 10
ridge 76.12 70.96 84.90 82.38 62.62 63.65 77.76 78.66
dnn 79.76 76.14 84.96 84.64 73.42 74.03 82.19 83.52
lr 77.57 71.52 84.86 83.14 75.34 73.54 84.24 83.99
sa 76.12 70.96 84.90 82.38 65.47 69.01 81.02 78.66
lr-sa 80.47 71.60 85.84 83.32 80.60 73.63 85.94 84.06
dann 87.28 87.64 88.20 90.47 86.86 88.53 88.21 90.22
dann-lr 87.83 86.70 89.48 90.36 88.62 87.66 89.60 90.30

as the loss function for models using average features

and use KL-Divergence for models with label regular-

ization. The neural network models in instance-level ex-

periments are used again in the bag level for methods

using average features, which are treated as input of

the networks. The difference is that the output of the

corresponding network are label proportions of bags in-

stead of the exact labels. Since bags are pure in terms

of domains, the output of the domain classifier are still

1s and 0s separately indicating the source and target

domain. As for networks implementing the label regu-

larization, we add one dimension representing the bag

to the input layer in original networks and connect to

the original output layer a lambda layer, which aims to

recover the dimension to match the label proportions

of bags by calculating the means along the instance

axis. Table 2 provides a summary of the hyperparame-

ter values used for dann-lr. The settings were initially

determined through pilot studies on a smaller dataset

and were not further tuned.

We perform 10-fold cross-validation to evaluate each

of the models. Data from both domains are split for

training domain adaptation methods. Since these ap-

proaches are unsupervised, we never have labels of in-

stances or label proportions of bags revealed during

training process. In DANN models, this is handled by

providing pseudo labels or proportions for instances or

bags of target domain and setting the corresponding

sample weights for label prediction output to 0s. Mean-

while, we make the number of instances or bags from

both domain balanced in each mini batch to ensure the

stability of training DANN models. We train the neu-

ral networks for dozens of epochs (the exact numbers

are given in following subsections), among which we al-

ways choose the model according to the accuracy or loss

on validation data from the source domain. The test-

ing data are all instances from the target domain. We

calculate the weighted F1 score for each of the 10-fold

trials and report the average as the performance of the

model.

5.1 Synthetic Data

The hyperparameters used for the synthetic data exper-

iments differ from those listed in Table 2. Specifically,

for DANN models, we set the output units of the fea-

ture extraction layer to 32. The number of output units

for hidden layers of label predictor and domain classifier

are respectively 64 and 128. No dropouts or batch nor-

malization are applied. For instance-level experiments,

we use Adam optimizer with the default learning rate

0.001 and train the network for 50 epochs; while for

bag-level trials, models are trained with the learning

rate of 0.0005 for 150 epochs. The loss weight of the

domain classifier (λ) is set to 0.5. Note that large val-

ues of λ can result prevent convergence for the label

8            



Acc
ep

te
d 

m
an

us
cr

ip
t

                                          ACCEPTED MANUSCRIPT                                      

Domain Adaptation for Learning from Label Proportions Using Domain-Adversarial Neural Network 9

Table 4 F1 scores of models on Yelp Dataset. The first column shows different settings of data: F and O indicate ”food” and
”others” representing the source domain; 50 and 20 is the bag size.

ridge dnn lr sa lr-sa dann dann-lr
F, 50 80.79 81.67 84.42 81.97 86.79 85.72 89.57
O, 50 76.15 79.61 85.86 76.63 81.67 83.10 86.65
F, 20 82.60 83.85 86.12 84.07 85.74 87.44 90.47
O, 20 77.98 81.64 86.02 76.82 80.96 84.73 87.28
average 79.38 81.69 85.61 79.87 83.79 85.25 88.49

prediction part of the DANN, especially when lack of

source-domain data. For SA approaches, the subspace

dimension k is set to 12.

We report weighted F1 scores on different settings

of synthetic data (Table 3). The settings correspond

to the four different distributions of feature shifts de-

scribed in Figure 2. In the first case, feature shifts (of

target domain w.r.t. source domain) are uniformly dis-

tributed within range [−0.4, 0.4]. In the second case,

the range shrinks to [−0.25, 0.25]. The last two cases

have the same shift range as the first two respectively

but the shifts are normally distributed, which makes

the domain classification harder. Moreover, at the bag

level, the numbers of data bags for different bag size

settings are also different. When the bag size is 50 the

number of bags in each domain is 200, and when it is

10 the number changes to 1,000.

Table 3 shows the results on these synthetic data.

In instance-level experiments, it is clear that i-dann

performs best on domain adaptation. In bag-level re-

sults, DANN models still outperform other approaches.

dann-lr addresses domain adaptation slightly better

than dann does when the bag size is 50. When the bag

size equals 10, the situation is just the opposite. SA

always performs better with LR than with average fea-

tures. For our settings of synthetic data, a noticeable

observation is that models typically perform better with

a larger bag size.

5.2 Yelp Reviews

For the Yelp dataset, we perform two groups of tests

choosing one of the two domain as source and the other

as target. We apply the parameters listed in Table 2

to models implemented by neural networks and train

each of them with the learning rate of 0.0005 and batch

size of 100 for 80 epochs. The loss weight of the domain

classifier (λ) is set to 2.0. The subspace dimension k

is set to 25 for SA approaches. Batch normalization is

applied to lr-sa to stabilize the training since the actual

input dimension of the network is reduced by SA.

At the instance level, when we choose food as the

source domain and all others as the target domain,

weighted F1 scores for methods without domain adap-

tation are around 92 and DANN improve it to around

93. When food serves as the target domain, no matter

performing domain adaptation or not, the F1 score is

always around 93.

We report the results at the bag level in Table 4. The

results demonstrate that LR performs well in this situ-

ation. We can see that lr without DA produces result

comparable to that of dann. Therefore as the com-

bination of the two approaches, dann-lr shows a re-

markable improvement on the testing scores. Another

observation is that the domain adaptation improves the

performance more when food serves as the source do-

main than that as the target domain.

To view what dann-lr does to address domain adap-

tation, we compute the importance of each single fea-

ture in the model and compare with that in dnn. The

importance value of a feature is obtained by estimating

the probability of predicting an instance in which the

corresponding feature value is set to 1 and all other val-

ues 0. The models are trained on data with the bag size

set to 50 and source domain set to food. The data are

divided into training set and validation set in the ratio

of 9 : 1 in both domains. For dnn model, the validation
accuracy for source domain is 88.36 and the testing ac-

curacy for target domain is 81.17. For dann-lr model,

the two values are 91.16 and 89.75 respectively. In or-

der to select the important features for monitoring, we

additionally train two logistic regression classifiers sepa-

rately on source and target domain data at the instance

level and find the set difference of top features in two

domains according to the model coefficients, e.g. the top

source-domain-related positive features are those in the

top 200 positive source-domain features but not in the

top 200 positive target-domain features. We re-project

the original feature importance values from dnn and

dann-lr separately to make them comparable, which

is done by applying the logit function to each value,

subtracting the intercept, applying the logistic function

and then rescaling them into range [−1, 1]. We report

the rank changes of four types of top features from dnn

to dann-lr in Table 5, where the rank of a feature is

obtained based on the distance between its importance

value and 0, i.e. a higher rank means a larger abso-
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Table 5 Top domain-related features and rank changes of their importance from dnn to dann-lr. The terms in the upper
part of the table are source-domain-related while those in the lower part are target-domain-related. The terms on the left are
positive features and those on the right are negative.

term rank change term rank change
try -4 minutes -24

atmosphere -70 after -53
had the -14 to be -18
love the -22 asked for -28

great food -87 understand -104
very good -16 sitting -93
attentive -6 was terrible -48
fresh and -65 needs -14

must -109 hair -14804
delicious and -32 sent -73

very 22 to 8
professional 1915 is not 53
everyone 204 this 187

knowledgeable 284 if 10
my 126 half 14

beautiful 367 do not 1
clean and 364 rude and 79
was very 162 least 40

an amazing 421 would have 51
comfortable 709 says 37

Table 6 F1 scores of models on Amazon review dataset.

ridge dnn lr sa lr-sa dann dann-lr
B → D 73.50 75.41 75.04 74.02 72.59 75.80 75.88
B → E 69.68 70.72 70.75 75.31 66.05 73.15 72.77
B → K 74.11 76.17 75.30 79.90 69.43 76.64 76.33
D → B 73.96 75.49 74.79 73.77 68.68 76.11 75.60
D → E 68.29 70.41 70.97 78.42 67.20 74.61 73.93
D → K 72.58 75.11 74.34 79.36 67.58 76.47 75.78
E → B 68.21 68.68 68.80 71.18 65.55 68.82 69.45
E → D 69.36 71.03 71.58 71.45 66.19 71.12 71.57
E → K 80.58 82.31 82.13 82.24 71.30 82.57 82.51
K → B 70.01 69.60 69.39 73.19 66.06 69.92 69.17
K → D 69.18 70.04 71.46 75.15 66.77 71.12 72.30
K → E 78.76 79.53 80.32 80.46 73.67 81.83 81.42
average 72.35 73.71 73.74 76.20 68.42 74.85 74.73

lute value of the importance. The results give us the

intuitive understanding of how dann-lr aligns the dis-

tributions of features across the two domains.

5.3 Amazon Reviews

We construct 12 pairwise domain settings from the four

domains in the dataset and perform tests on them all.

The structures and parameters for all models are basi-

cally the same as those used for the Yelp dataset (§5.2)
except that we train the neural network models for 150

epochs.

The testing results in bag level are shown in Table

6 reporting weighted F1 scores for different methods.

The bag size is set to 10, so we only have 200 bags

in each domain, which can make the training of neu-

ral networks somewhat unstable. Under this circum-

stance, Ridge with SA (sa) outperforms other methods

among most domain settings, most likely because its

lower complexity is better suited to the limited training

data. With both a small bag size and a small number

of bags, the label regularization methods cannot seem

to help improve the performance. In most cases, dann

performs better than dann-lr. Note that for the do-

main settings where sa does not work well (B → D, D

→ B), the two domains (books and DVDs) have more

features in common than other settings.

6 Conclusion

This paper proposes an approach to domain adaptation

for the LLP settings, where only the label proportions of
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source domain are known. As an extension of DANN, it

offers flexibility in terms of its compatibility with any

neural network architecture and easy implementation

via various deep learning packages. The experimental

results demonstrate that DANN-LR outperforms the

other baselines in the sentiment classification problem

when an ample number of data bags are present. In the

future, we will consider additional classification tasks

to further test the viability of this approach.
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